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In this paper, the available potential energy (APE ) framework of Winters et al.
(J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier–
Stokes equations, with the aims of clarifying (i) the nature of the energy conversions
taking place in turbulent thermally stratified fluids; and (ii) the role of surface
buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977)
constraint on the mechanical energy sources of stirring required to maintain diapycnal
mixing in the oceans. The new framework reveals that the observed turbulent rate of
increase in the background gravitational potential energy GPE r , commonly thought to
occur at the expense of the diffusively dissipated APE , actually occurs at the expense
of internal energy, as in the laminar case. The APE dissipated by molecular diffusion,
on the other hand, is found to be converted into internal energy (IE ), similar to the vis-
cously dissipated kinetic energy KE . Turbulent stirring, therefore, does not introduce
a new APE/GPE r mechanical-to-mechanical energy conversion, but simply enhances
the existing IE/GPE r conversion rate, in addition to enhancing the viscous dissipation
and the entropy production rates. This, in turn, implies that molecular diffusion con-
tributes to the dissipation of the available mechanical energy ME =APE + KE , along
with viscous dissipation. This result has important implications for the interpretation
of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which
new physically based definitions are proposed and contrasted with previous definitions.

The new framework allows for a more rigorous and general re-derivation from the
first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid
for a non-Boussinesq ocean:

G(KE ) ≈ 1 − ξ Rf

ξ Rf

Wr, forcing =
1 + (1 − ξ )γmixing

ξ γmixing

Wr, forcing ,

where G(KE ) is the work rate done by the mechanical forcing, Wr, forcing is the rate of
loss of GPE r due to high-latitude cooling and ξ is a nonlinearity parameter such that
ξ = 1 for a linear equation of state (as considered by MW98), but ξ < 1 otherwise. The
most important result is that G(APE ), the work rate done by the surface buoyancy
fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the
mechanical forcing in stirring and driving the oceans. As a consequence, the overall
mixing efficiency of the oceans is likely to be larger than the value γmixing = 0.2
presently used, thereby possibly eliminating the apparent shortfall in mechanical
stirring energy that results from using γmixing =0.2 in the above formula.
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1. Introduction
1.1. Stirring versus mixing in turbulent stratified fluids

As is well known, stirring by the velocity field greatly enhances the amount of
irreversible mixing due to molecular diffusion in turbulent stratified fluid flows, as
compared with the laminar case. A rigorous proof of this result exists for thermally
driven Boussinesq fluids for which boundary conditions are either of no-flux or fixed
temperature. In that case, it is possible to show that

Φ =

∫
V

‖∇T ‖2dV∫
V

‖∇Tc‖2dV

, (1.1)

i.e. the ratio of the entropy production (in the Boussinesq limit) of the stirred state
over that of the corresponding purely conductive non-stirred state is always greater
than unity, where T and Tc are the temperature of the stirred and conductive states
respectively, the proof being originally due to Zeldovich (1937) and re-derived by
Balmforth & Young (2003). The function Φ was introduced by Paparella & Young
(2002) as a measure of the strength of the circulation driven by surface buoyancy
fluxes. However, because Φ is analogous to an average Cox number (the local
turbulent effective diffusivity normalized by the background diffusivity; e.g. Osborn &
Cox 1972; Gregg 1987), it is also representative of the amount of turbulent diapycnal
mixing taking place in the fluid.

Reversible stirring and irreversible mixing (see, e.g. Eckart 1948) occur in relation to
physically distinct types of forces at work in the fluid. Stirring works against buoyancy
forces by lifting and pulling relatively heavier and lighter parcels respectively, thus
causing a reversible conversion between kinetic energy (KE ) and available potential
energy (APE ). Mixing, on the other hand, is the byproduct of the work done by
the generalized thermodynamic forces associated with molecular viscous and diffusive
processes that relax the system towards thermodynamic equilibrium (see, e.g. de
Groot & Mazur 1962; Kondepudi & Prigogine 1998; Ottinger 2005). Thus, stirring
enhances the work rate done by the viscous stress against the velocity field, resulting in
enhanced dissipation of KE into internal energy (IE ). Similarly, stirring also enhances
the thermal entropy production rate associated with the heat transfer imposed by
the second law of thermodynamics, which results in a diathermal effective diffusive
heat flux that is increased by the ratio (Aturbulent/Alaminar )

2 (another measure of the
Cox number), where Aturbulent and Alaminar refer to the ‘turbulent’ and ‘laminar’ areas
of a given isothermal surface (see Nakamura 1996; Winters & d’Asaro 1996). In
the laminar regime, the generalized thermodynamic forces associated with molecular
diffusion are known to cause the conversion of IE into background gravitational
potential energy (GPE r ). From a thermodynamic viewpoint, it would be natural to
expect the stirring to enhance the IE/GPE r conversion, but in fact, the existing
literature usually accounts for the observed turbulent increase in GPE r as the result
of a ‘new’ energy conversion irreversibly converting APE into GPE r . Clarifying this
controversial issue is a key objective of this paper.

1.2. The modern approach to the energetics of turbulent mixing

The most rigorous existing theoretical framework for understanding the interactions
between the different forces at work in a turbulent stratified fluid is probably the
available potential energy framework introduced by Winters et al. (1995); it is so far
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the only framework that rigorously separates reversible effects due to stirring from
the irreversible effects due to mixing (see also Tseng & Ferziger 2001). As originally
proposed by Lorenz (1955), such a framework separates the potential energy PE (i.e.
the sum of the GPE andthe IE ) into its available (APE =AGPE + AIE ) and non-
available (PE r =GPE r + IE r ) components, with the IE component being neglected
for a Boussinesq fluid, the case considered by Winters et al. (1995). The usefulness
of such a decomposition stems from the fact that the background reference state
is by construction affected only by diabatic and/or irreversible processes, so that
understanding how the reference state evolves provides insight into how much mixing
takes place in the fluid.

In the case of a freely decaying turbulent Boussinesq stratified fluid with an equation
of state linear in temperature, referred to as the L-Boussinesq model hereafter, Winters
et al. (1995) show that the evolution equations for KE , APE = AGPE and GPE r take
the form:

d KE

dt
= −C(KE , APE ) − D(KE ), (1.2)

d APE

dt
= C(KE , APE ) − D(APE ), (1.3)

d GPE r

dt
= Wr,mixing = Wr,turbulent + Wr,laminar , (1.4)

where C(APE , KE ) = −C(KE , APE ) is the so-called buoyancy flux measuring the
reversible conversion between KE and APE , D(APE ) is the diffusive dissipation of
APE , which is related to the dissipation of temperature variance χ (e.g. Holloway
1986; Zilitinkevich et al. 2008), while Wr,mixing is the rate of change in GPE r induced
by molecular diffusion, which is commonly decomposed into a laminar Wr,laminar and
a turbulent Wr,turbulent contribution. All these terms are explicitly defined in Appendix
A for the L-Boussinesq model, as well as for a Boussinesq fluid whose thermal
expansion increases with temperature, called the NL-Boussinesq model. Appendix B
further generalizes the corresponding expressions for the fully compressible Navier–
Stokes equations (CNSE) with an arbitrary nonlinear equation of state (depending
on pressure and temperature only, though).

Of particular interest in turbulent mixing studies is the behaviour of Wr,turbulent – the
turbulent rate of increase in GPE r – which has been mostly discussed in the context
of the L-Boussinesq model, for which an important result is

Wr,turbulent = D(APE ), (1.5)

which states the equality between the APE dissipation rate and Wr,turbulent . This
result is important, because from the known properties of D(APE ), it is clear that
enhanced diapycnal mixing rates fundamentally require: (i) finite values of APE , since
D(APE ) = 0 when APE = 0; and (ii) an APE cascade transferring the spectral energy
of the temperature (density) field to the small scales at which molecular diffusion is
the most efficient at smoothing out temperature gradients. The discussion of the APE
cascade, which is closely related to that of the temperature variance, has an extensive
literature related to explaining the k−3 spectra in the so-called buoyancy subrange,
both in the atmosphere (e.g. Lindborg 2006) and in the oceans (e.g. Holloway 1986;
Bouruet-Aubertot, Sommeria & Staquet 1996). Note that because APE is a globally
defined scalar quantity, speaking of APE cascades requires the introduction of the
so-called APE density, noted Φa(x, t) here, for which a spectral description is possible
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E = KE + GPE + IE
APE = AGPE + AIE = 0

PE = PEr = GPEr + IEr = 0

APE = AGPE + AIE = KE APE = 0

PEr = KEPE = APE
PEr = 0 PE = PEr = KE

(a) Initial laminar

state

(b) KE conversion

into APE and action

of lateral diffusion

(c) Complete

conversion of APE

into PEr

Figure 1. Idealized depiction of the diffusive route for kinetic energy dissipation. (a) The
laminar state possessing initially no AGPE and AIE, but some amount of KE. (b) The
state obtained by the reversible adiabatic conversion of some kinetic energy into APE, which
increases APE but leaves the background GPE r and IE r unchanged. (c) The state obtained
by letting the horizontal part of molecular diffusion smooth out the isothermal surfaces until
all the APE in (b) have been converted into background PE r =GPE r + IE r .

(see, e.g. Holliday & McIntyre 1981; Roullet & Klein 2009; Molemaker & McWilliams
2009).

Equations (1.2)–(1.4) exhibit only one type of reversible conversion, namely the
‘buoyancy flux’ associated with the APE/KE conversion, and three irreversible
conversions – D(KE ), D(APE ) and Wr,mixing – the first one caused by molecular
viscous processes and the latter two caused by molecular diffusive processes. The
primary goal of turbulence theory is to understand how the reversible C(APE , KE )
conversion and irreversible D(KE ), D(APE ) and Wr,mixing are all interrelated. In
this paper, we focus on turbulent diffusive mixing, for the understanding of viscous
dissipation constitutes somehow a separate issue with its own problems (e.g. Gregg
1987). The nature of these links is usually explored by estimating the energy budget
of a turbulent mixing event, defined here as a period of intense mixing preceded and
followed by laminar conditions, for which there is a huge literature of observational,
theoretical and numerical studies. Integrating the above energy equations over the
duration of the turbulent mixing event yields

�KE = −C(KE , APE ) − D(KE ), (1.6)

�APE = C(KE , APE ) − D(APE ), (1.7)

�GPE r = Wr,mixing = Wr,turbulent + Wr,laminar , (1.8)

where �(.) and the overbar denote respectively the net variation and the time-integral
of a quantity over the mixing event. Summing the KE and APE equations yields the
important ‘available’ mechanical energy equation

�KE + �APE = −[D(KE ) + D(APE )] < 0, (1.9)

which states that the total ‘available’ mechanical energy, ME =KE +APE , undergoes
a net decrease over the mixing event as the result of the viscous and diffusive
dissipation of KE and APE , respectively. A schematic of the APE dissipation
process, which provides a diffusive route to KE dissipation, is illustrated in figure 1.
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1.3. Measures of mixing efficiency in turbulent stratified fluids

Equation (1.9) makes it clear that turbulent diapycnal mixing (through D(APE ))
participates in the total dissipation of available mechanical energy ME =KE +APE .
Since D(APE ) is non-zero only if APE is non-zero, turbulent diapycnal mixing
requires having as much of ME in the form of APE as possible. The classical concept
of ‘mixing efficiency’, reviewed below, seeks to provide a number quantifying the ability
of a particular turbulent mixing event in dissipating ME = KE + APE preferentially
diffusively rather than viscously. From a theoretical viewpoint, it is useful to separate
turbulent mixing events into two main archetypal categories, corresponding to the
two cases where ME is initially entirely in either KE or APE form. These two cases
are treated separately before providing a synthesis addressing the general case.

At a fundamental level, quantifying the mixing efficiency of a turbulent mixing
event requires two numbers: one to measure how much of ME is viscously dissipated
and the other to measure how much of ME is dissipated by turbulent mixing. While
everybody seems to agree that D(KE ) is the natural measure of viscous dissipation,
it is the buoyancy flux C(APE , KE ), rather than D(APE ), that has been historically
thought to be the relevant measure of how much of ME is dissipated by turbulent
mixing, since it is the term in (1.6) that seems to be removing KE along with viscous
dissipation. For mechanically driven turbulent mixing events, defined here such that
�APE =0 and �ME = �KE , the efficiency of mixing has been classically quantified
by two important numbers. The first is the so-called flux Richardson number Rf ,
defined by Linden (1979) as ‘the fraction of the change in available kinetic energy
which appears as the potential energy of the stratification’, mathematically defined as

Rf =
C(KE , APE )

|�KE | =
C(KE , APE )

C(KE , APE ) + D(KE )
(1.10)

(see Osborn 1980), and the second is the so-called mixing efficiency:

γmixing =
Rf

1 − Rf

=
C(KE , APE )

D(KE )
. (1.11)

It is now recognized, however, that the buoyancy flux represents only an indirect
measure of irreversible mixing, since it physically represents a reversible conversion
between KE and APE , while furthermore appearing to be difficult to interpret
empirically (see, e.g. Barry et al. 2001 and references therein). Recognizing this
difficulty, Caulfield & Peltier (2000) and Staquet (2000) effectively suggested to
replace C(KE , APE ) by a more direct measure of irreversible mixing in the above
definitions of Rf and γmixing . Since turbulent diapycnal mixing is often diagnosed
empirically from measuring the net changes in GPE r over a mixing event (e.g.
(McEwan 1983a , 1983b; Barry et al. 2001; Dalziel et al. 2008), a natural choice is to
use Wr,turbulent as a direct measure of irreversible mixing, which leads to

R
GPE r

f =
Wr,turbulent

Wr,turbulent + D(KE )
, (1.12)

γ
GPE r

mixing =
R

GPE r

f

1 − R
GPE r

f

=
Wr,turbulent

D(KE )
. (1.13)

From a theoretical viewpoint, these definitions are justified from the fact that in the
L-Boussinesq model, the following equalities hold:

C(APE , KE ) = D(APE ) = Wr,turbulent , (1.14)
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as follows from (1.6) and (1.7), combined with (1.5), when �APE = 0. The modified
flux Richardson number R

GPE r

f coincides – for a suitably defined time interval – with
the cumulative mixing efficiency Ec introduced by Caulfield and Peltier (2000), as
well as with the generalized flux Richardson number Rb defined by Staquet (2000),
in which our γ

GPE r

mixing is also denoted by γb.
Although (1.12) and (1.13) are consistent with the traditional buoyancy–flux-based

definitions of Rf and γmixing in the context of the L-Boussinesq model, such definitions
overlook the fact that (1.14) is not valid in the more general context of the fully
compressible Navier–Stokes equations, for which the ratio

ξ =
Wr,turbulent

D(APE )
(1.15)

is in general less than one, and even sometimes negative, for water or seawater. For
this reason, it appears that Rf and γmixing should, in fact, be defined in terms of
D(APE ), not Wr,turbulent , viz.,

RDAPE
f =

D(APE )

D(APE ) + D(KE )
, (1.16)

γ DAPE
mixing =

D(APE )

D(KE )
, (1.17)

which we call the dissipation flux Richardson number and the dissipation mixing
efficiency respectively, to distinguish them from their predecessors. In our opinion,
RDAPE

f and γ DAPE
mixing as defined by (1.16) and (1.17) are really the ones that are truly

consistent with the properties assumed to be attached to those numbers. Most notably,
(1.16) is the only way to define a flux Richardson number that is guaranteed to lie
within the interval [0, 1], since neither C(KE , APE ) nor Wr,turbulent can be ascertained
to be positive under all circumstances. Since (1.12) and (1.13) are still likely to be
used in the future owing to their practical interest, it is useful to provide conversion
rules between the GPE r and D(APE )-based definitions of Rf and γmixing , viz.,

γ
GPE r

mixing = ξγ DAPE
mixing , R

GPE r

f =
ξRDAPE

f

1 − (1 − ξ )RDAPE
f

. (1.18)

These formulae require knowledge of the nonlinearity parameter ξ , which measures
the importance of nonlinear effects associated with the equation of state (see Tailleux
2009 for details). The often-cited canonical value for mechanically driven turbulent
mixing is γmixing ≈ 0.2, which appears to date back from Osborn (1980) (e.g. Peltier &
Caulfield 2003).

The second case of interest, namely buoyancy-driven turbulent mixing, is defined
here as being such that �KE = 0 and �ME = �APE , as occurs in relation to the
so-called Rayleigh–Taylor instability for instance. Equations (1.6) and (1.7) lead to

C(KE , APE ) = −D(KE ) < 0, (1.19)

D(APE ) = C(KE , APE ) − �APE = |�APE | − |C(KE , APE )|. (1.20)

Equation (1.19) reveals that the buoyancy flux is negative this time and it represents
the fraction of ME that is lost to viscous dissipation, not diffusive dissipation. This
establishes, if needed, that the buoyancy flux should not be systematically interpreted
as a measure of irreversible diffusive mixing. Since Linden (1979)’s above definition
for the flux Richardson number does not really make sense for Rayleigh–Taylor
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instability, an alternative definition is called for. The most natural definition, in our
opinion, is as the fraction of ME dissipated by irreversible diffusive mixing, viz.,

Rf =
−�APE + C(KE , APE )

−�APE
= 1 − |C(KE , APE )|

|�APE | , (1.21)

which, according to (1.6) and (1.7), is equivalent to

Rf =
D(APE )

D(APE ) + D(KE )
, (1.22)

with the corresponding value of γmixing :

γmixing =
Rf

1 − Rf

=
D(APE )

D(KE )
, (1.23)

which are identical to (1.16) and (1.17). The above results make it possible, therefore,
to use RDAPE

f and γ DAPE
mixing as definitions for the flux Richardson number and mixing

efficiency that make sense for all possible types of turbulent mixing events.
At this point, a note about terminology seems to be warranted, since in the case

of the Rayleigh–Taylor instability, it is Rf that is referred to as the mixing efficiency
by some authors (e.g. Linden & Redondo 1991; Dalziel et al. 2008), rather than
γmixing . Physically, this seems more logical, since Rf is always comprised within the
interval [0, 1], whereas γmixing is not. Interestingly, Oakey (1982) appears to be the
first to define γmixing as a ‘mixing coefficient representing the ratio of potential energy
to kinetic energy dissipation’. For this reason, it would seem more appropriate and
less ambiguous to refer to γmixing as the ‘dissipations ratio’. Unfortunately, it is not
always clear in the literature which quantity the widely used term ‘mixing efficiency’
refers to, as it has been used so far to refer to both Rf and γmixing . In order to avoid
ambiguities, the remaining paper only makes use of the quantities RDAPE

f and γ DAPE
mixing ,

which for simplicity are denoted by Rf and γmixing , respectively.
As a side note, it seems important to point out that Rayleigh–Taylor instability

has the peculiar property that �GPE r,max , the maximum possible increase in GPE r

achieved for the fully homogenized state, is only half the initial amount of APE
(at least when ξ = 1, i.e. in the context of the L-Boussinesq model; e.g. Linden &
Redondo 1991; Dalziel et al. 2008). Physically, it means that less than 50 % of the
initial APE can actually contribute to turbulent diapycnal mixing, and hence that
at least 50 % of it must be eventually viscously dissipated. As a result, one has the
following constraints:

Rf =
D(APE )

|�APE | =
ξWr,turbulent

|�APE | �
1

2
, (1.24)

γmixing �
ξ/2

1 − ξ/2
� 1. (1.25)

Experimentally, Linden & Redondo (1991) reported values of Rf ≈ 0.3
(γmixing = 3/7 ≈ 0.43), while Dalziel et al. (2008) reported experiments in which the
maximum possible value Rf ≈ 0.5 (γmixing ≈ 1) was reached. Owing to the peculiarity
of the Rayleigh–Taylor instability, however, one should refrain from concluding that
γmixing =1 or Rf = 0.5 represents the maximum possible values for γmixing and Rf

in turbulent stratified fluids. To reach definite and general conclusions about γmixing

and Rf , more general examples of buoyancy-driven turbulent mixing events should
be studied. It would be interesting, for instance, to study the mixing efficiency of
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GPEr
+0.2

IEo

+0.8

(a) Standard interpretation of (1.5)

(b) New interpretation of (1.5)

IEexergyIEoKE –1.0

KE –1.0

–0.01

APE 0

+0.8

APE 0

+0.2

+0.2
+0.2

+1.0

GPEr

IEexergy

+0.21

–0.21

+0.21

+0.21

+0.01

Net change in total IE = +0.79

Net change in total IE = +0.79

Figure 2. (a) Predicted energy changes for a hypothetical turbulent mixing event under the
assumption that the diffusively dissipated APE is irreversibly converted into GPE r . (b) Same
as in (a) under the assumption that the diffusively dissipated APE is irreversibly converted
into IE 0, as the viscously dissipated KE . In both cases, the net energy changes in KE , GPE r ,
APE and IE are the same. The only predicted differences concern the subcomponents of the
internal energy IE 0 and IEexergy .

a modified Rayleigh–Taylor instability such that the unstable stratification occupies
only half or less of the spatial domain, so that �GPE r,max � |�APE |. In this case,
all of the initial APE could, in principle, be dissipated by molecular diffusion, which
would correspond to the limits Rf = 1 and γmixing = + ∞. Of course, such limits
cannot be reached, as it is impossible to prevent part of the APE to be converted into
KE , part of which will necessarily be dissipated viscously, but they are nevertheless
important in suggesting that values of γmixing > 1 can, in principle, be reached, which
sets an interesting goal for future research.

1.4. On the nature of D(APE ) and Wr,turbulent

Of fundamental importance in understanding the physics of turbulent diapycnal
mixing are the nature and type of the energy conversions associated with D(APE )
and Wr,turbulent . So far, it seems fair to say that these two energy conversions have
been regarded as essentially being one and the same, based on the exact equality
Wr,turbulent = D(APE ) occurring in the L-Boussinesq model, suggesting that molecular
diffusion irreversibly converts APE into GPE r (e.g. Winters et al. 1995). Such an
interpretation now appears to be widely accepted (e.g. MW98; Caulfield & Peltier
2000; Peltier & Caulfield 2003; Huang 2004; Thorpe 2005, among others). The main
characteristic of this view, schematically illustrated in figure 2(a), is to disregard the
possibility that the turbulent increase of GPE r might be due to the enhancement of the
IE/GPE r conversion rate by the stirring. In other words, the current view assumes
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that the work involved in the turbulent increase of GPE r is done by the stirring
against buoyancy forces, not by the generalized thermodynamic forces responsible
for entropy production and the IE/GPE r conversion. At the same time, the current
view seems to accept that stirring enhances entropy production. But from classical
thermodynamics, this seems possible only if the work rate done by the generalized
thermodynamic forces is also enhanced, which in turn should imply an enhanced
IE/GPE r conversion.

In order to determine whether the turbulent increase of GPE r could be accounted
for by a stirring-enhanced IE/GPE r conversion rate, rather than by the irreversible
conversion of APE into GPE r , it is useful to point out that the validity of Winters
et al. (1995)’s interpretation seems to rely crucially on D(APE ) and Wr,turbulent being
exactly identical, not only mathematically (as is the case in the L-Boussinesq model)
but also physically. Here, two quantities are defined as being physically equal if
they remain mathematically equal in more accurate models of fluid flows – closer
to physical ‘truth’ in some sense – such as CNSE. Indeed, only a physical equality
can define a physically valid energy conversion, as we hope the reader will agree.
However, as shown in Appendix B, which extends Winters et al. (1995) results to the
CNSE, the equality D(APE ) = Wr,turbulent is found to be a serendipitous feature of the
L-Boussinesq model, which at best is only a good approximation, the general result
being that the ratio

ξ =
Wr,turbulent

D(APE )
(1.26)

usually lies within the interval −∞ <ξ < 1 for water or seawater and it strongly
depends on the nonlinear character of the equation of state. Whether there exist
fluids allowing for ξ > 1 is not known yet. An important result is that it appears to be
perfectly possible for GPE r to decrease as the result of turbulent mixing, in contrast
to what is often stated in the literature. This case, which corresponds to ξ < 0, was in
fact previously identified and discussed by the late Nick Fofonoff in a series of little
known papers (see Fofonoff 1962, 1998, 2001). For this reason, the case ξ < 0 shall
be subsequently referred to as the Fofonoff regime, while the more commonly studied
case for which Wr,turbulent > 0 shall be referred to as the classical regime.

The lack of physical equality between D(APE ) and Wr,turbulent makes Winters
et al. (1995)’s interpretation very unlikely and gives strong credence to the idea that
Wr,turbulent actually corresponds to a stirring-enhanced IE/GPE r conversion rate. If so,
what about D(APE )? In order to shed light on the issue of APE dissipation, it is useful
to recall some well-known properties of thermodynamic transformations associated
with the following problem: Assuming that the potential energy PE = GPE + IE of
a stratified fluid increases by �E, how is �E split between �GPE and �IE? Here,
standard thermodynamics tells us that the answer depends on whether �E is added
reversibly or irreversibly to PE . Thus, if �E is added reversibly to PE (i.e. without
entropy change, and for a nearly incompressible fluid), then

�GPE

�E
≈ 1,

�IE

�E
� 1, (1.27)

while if �E is added irreversibly (i.e. with an increase in entropy), then

�GPE

�E
� 1,

�IE

�E
≈ 1, (1.28)

i.e. the opposite. These results, therefore, suggest that when molecular diffusion
converts APE into PE r , the dissipated APE must nearly entirely go into IE r , not



348 R. Tailleux

GPE r , in contrast to what is usually assumed. (The demonstration of (1.27) and (1.28)
is omitted for brevity, but this follows from the results of Appendix B.) It follows
that what the equality D(APE ) = Wr,turbulent of the L-Boussinesq actually states is the
equality of the APE/IE and IE/GPE r conversion rates (or more generally, for real
fluids, the correlation between the two rates), not that D(APE ) and Wr,turbulent are of
the same type. Physically, the two conversion rates Wr,turbulent and D(APE ) appear to
be fundamentally correlated because they are controlled by both molecular diffusion
and the spectral distribution of APE , as will be made clear later in the text.

1.5. Internal energy or internal energies?

In the new interpretation proposed above, internal energy is destroyed by the IE/GPE r

conversion at the turbulent rate Wr,turbulent , while being created by the APE dissipation
at the turbulent rate D(APE ). Could it be possible, therefore, for the dissipated APE
to be eventually converted into GPE r , not by the direct APE/GPE r conversion
route proposed by Winters et al. (1995), as this was ruled out by thermodynamic
considerations, but indirectly by transiting through the IE reservoir?

As shown in Appendix B, the answer to the above question is found to be
negative, because it turns out that the kind of IE which APE is dissipated
into appears to be different from the kind of IE being converted into GPE r .
Specifically, Appendix B shows that IE is indeed best regarded as the sum of
distinct sub-reservoirs. In this paper, three such sub-reservoirs are introduced:
the available internal energy (AIE ), the exergy (IEexergy ) and the dead internal
energy (IE 0). Physically, this decomposition parallels the following temperature
decomposition: T (x, y, z, t) = T ′(x, y, z, t) + Tr (z, t) + T0(t), where T0(t) is the
equivalent thermodynamic equilibrium temperature of the system, Tr (z, t) is Lorenz’s
reference vertical temperature profile and T ′(x, y, z, t) is the residual. Physically, AIE
is the internal energy component of Lorenz (1955)’s APE , while IE 0 and IEexergy

are the internal energy associated with the equivalent thermodynamic equilibrium
temperature T0 and vertical temperature stratification Tr , respectively. The idea
behind this decomposition can be traced back to Gibbs (1878), the concept of exergy
being common in the thermodynamic engineering literature (e.g. Bejan 1997). See also
Marquet (1991) for an application of exergy in the context of atmospheric available
energetics. A full review of existing ideas related to the present ones is beyond the
scope of this paper, as the engineering literature about available energetics and
exergy is considerable. The way it works is encompassed in the following equations:

d KE

dt
= −C(KE , APE ) − D(KE ), (1.29)

d APE

dt
= C(KE , APE ) − D(APE ), (1.30)

d GPE r

dt
= Wr,mixing = Wr,laminar + Wr,turbulent , (1.31)

d IE 0

dt
≈ D(KE ) + D(APE ) = Dtotal, (1.32)

d IEexergy

dt
≈ −Wr,mixing = −Wr,laminar − Wr,turbulent . (1.33)

In this model, the first three equations are just a rewriting of (1.2) and (1.4), so that
the main novelty is associated with (1.32) and (1.33). Physically, (1.32) states that the
viscous and diffusive dissipation processes D(KE ) and D(APE ) mostly affect T0 but
not Tr , while (1.33) states that the IE/GPE r conversion reduces IEexergy as well as
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smoothes out Tr . The empirical verification of the validity of the above equations is
the main topic of § 2.

1.6. Link with the ocean heat engine controversy

In the oceans, turbulent diapycnal mixing is a crucial process, as it is required
to transport heat from the surface equatorial regions down to the depths cooled
by high-latitude deep-water formation. In the traditional picture found in most
oceanography textbooks, turbulent diapycnal mixing and deep water formation are
usually described as part of the buoyancy-driven component of the large-scale ocean
circulation responsible for the oceanic poleward transport of heat, often called the
meridional overturning circulation (MOC). Physically, the MOC is often equated with
the longitudinally averaged circulation taking place in the latitudinal/vertical plane.
The possible dependence of the buoyancy-driven circulation on mechanical forcing,
which one might expect in a system as nonlinear as the oceans, has been usually
ignored. However, the idea of a buoyancy-driven circulation unaffected by mechanical
forcing physically makes sense only if one can establish that the mechanical stirring
required to sustain turbulent diapycnal mixing is driven by surface buoyancy fluxes.
MW98 questioned this view and argued instead that turbulent diapycnal mixing must,
in fact, be primarily driven by the wind and tides, and hence that the buoyancy-driven
circulation must in fact be mechanically controlled. Moreover, MW98 analysed the
GPE budget of the oceans to derive the following constraint:

G(KE ) =
Wr, forcing

γmixing

, (1.34)

linking the work rate G(KE ) done by the mechanical sources of stirring, the rate
Wr, forcing at which high-latitude cooling depletes GPE r , and the oceanic bulk ‘mixing
efficiency’ γmixing (or more accurately, the dissipations ratio, as argued previously).
Physically, (1.34) states that the fraction γmixing of G(KE ) has to be expanded
into turbulent mixing to raise GPE r at the same rate Wr, forcing at which it is
lost. By using the values Wr, forcing ≈ 0.4 TW and γmixing = 0.2, MW98 concluded that
G(KE ) = O(2 TW) is approximately required to sustain the observed oceanic rates of
turbulent diapycnal mixing. This result caused much stirring in the ocean community,
because the wind supplies only about 1 TW, leaving an apparent shortfall of 1 TW to
close the energy budget. This led MW98 to argue that the only plausible candidate to
account for the missing stirring should be the tides, spawning a considerable research
effort over the past 10 years on the issue of tidal mixing.

Although MW98’s arguments have been echoed favourably within the ocean
community (see, e.g. Paparella & Young 2002; Huang 2004; Wunsch & Ferrari 2004;
Kuhlbrodt et al. 2007; Nycander et al. 2007), it remains unclear why the surface
buoyancy fluxes should not be important in stirring and driving the oceans, given
that the work rate done by the surface buoyancy fluxes, as measured by the APE
production rate, was previously estimated by Oort, Anderson & Peixoto (1994) to be
G(APE ) = 1.2 ±0.7 TW and hence comparable in importance with the work rate done
by the mechanical forcing. In their paper, MW98 rather summarily dismissed Oort
et al. (1994)’s results by contending that the so-called Sandström (1908)’s theorem
requires that G(APE ) be negligible, and hence that the buoyancy forcing cannot
produce any significant work in the oceans, but given the highly controversial nature
of Sandström (1908)’s paper in the physical oceanography community and its apparent
refutation by Jeffreys (1925), it is important to have a more solid physical basis to
make any definitive statements about G(APE ). Note that Sandstrom’s paper was
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recently translated by Kuhlbrodt (2008), who argues that Sandstrom did not initially
formulate his results as a theorem, but rather as an inference. Ascertaining whether
G(APE ) is large or small is obviously crucial in determining whether the MOC is
effectively driven by the turbulent mixing powered by the winds and tides, as argued
by MW98, or whether it is in fact predominantly buoyancy-driven, as it appears
to be possible if G(APE ) is as large as predicted by Oort et al. (1994). Further
clarification is also needed to understand the possible importance of some effects
neglected by MW98, such as those due to a nonlinear equation of state, which
Gnanadesikan et al. (2005) argue lead to a significant underestimation of G(KE ), or
due to entrainment effects, which Hughes & Griffiths (2006) argue lead to a possible
significant overestimation of G(KE ).

1.7. Purpose and organization of the paper

The primary objective of this paper is to clarify the nature of the energy conversions
taking place in turbulent stratified fluids, with the aim of clarifying the underlying
assumptions entering MW98’s energy constraint equation (1.34). The backbone of
the paper are the theoretical derivations presented in Appendices A and B, which
provide a rigorous theoretical support to understand the links between stirring and
irreversible mixing in mechanically and thermodynamically forced thermally stratified
fluids. Appendix A offers a new derivation of Winters et al. (1995)’s framework,
which is further extended to the case of a Boussinesq fluid with a thermal expansion
increasing with temperature. Appendix B is an extension to the case of a fully
compressible thermally stratified fluid, in which the decomposition of internal energy
into three distinct sub-reservoirs is presented. Section 2 illustrates the differences
between D(APE ) and Wr,turbulent using a number of different viewpoints and examines
some of its consequences, in the context of freely decaying turbulence. Section 3 revisits
the issues pertaining to MW98’s energy constraint. Section 4 offers a summary and
discussion of the results.

2. A new view of turbulent mixing energetics in freely decaying stratified
turbulence

2.1. Boussinesq versus non-Boussinesq energetics

As mentioned above, a central point of this paper is to argue that irreversible
energy conversions in turbulent stratified fluids are best understood if internal
energy is not regarded as a single energy reservoir, but as the sum of at least three
distinct sub-reservoirs. Obviously, these nuances are lost in the traditional Boussinesq
description of turbulent fluids, since the latter lacks an explicit representation of
internal energy, let alone of its three sub-reservoirs. This does not mean that the
Boussinesq approximation is necessarily inaccurate or incomplete, but rather that
the definitive interpretation of its energy conversions requires to be checked against
the understanding gained from the study of the fully compressible Navier–Stokes
equations. Such a study was carried out and its results are reported in Appendix
B. In our approach, successive refinements of the energy conversions were sought,
starting from the KE/APE/PE r system for which the number of energy conversions
is limited and unambiguous. The second step was to split PE r into its GPE r and
IE r components; the third step was to split IE r further into its exergy IE r − IE 0

and dead IE 0 components. Finally, the last step was to split APE into its AIE
and AGPE components. These successive refinements are illustrated in figure 10 in
Appendix B. An important outcome of the analysis is that the structure and form
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of the KE/APE/GPE r equations ((1.2)–(1.4)) obtained for the L-Boussinesq model
turn out to be more generally valid for a fully compressible thermally stratified fluid,
so that one still has

d KE

dt
= −C(KE , APE ) − D(KE ), (2.1)

d APE

dt
= C(KE , APE ) − D(APE ), (2.2)

d GPE r

dt
= Wr,mixing = Wr,turbulent + Wr,laminar . (2.3)

It can be shown, however, that the explicit expressions for C(KE , APE ), D(KE )
and D(APE ) differ between the two sets of equations; see Appendices A and B for
the details of these differences. Based on the numerical simulations detailed in the
following, the most important point is probably that D(APE ) appears to be relatively
unaffected by the details of the equation of state, in contrast to Wr,mixing , which suggests
that the L-Boussinesq model is able to accurately represent the irreversible diffusive
mixing associated with D(APE ). Moreover, since the internal energy contribution
to APE is usually small for a nearly incompressible fluid, it also follows that the
L-Boussinesq model should also be able to capture the time-averaged properties of
C(KE , APE ), since the latter is the difference of two terms expected to be accurately
represented by the L-Boussinesq model based on the APE equation. The L-Boussinesq
model, however, will in general fail to correctly capture the behaviour of GPE r , unless
the approximation of a linear equation of state is accurate enough, as seems to be
the case for compositionally stratified flows for instance (e.g. Dalziel et al. 2008). The
above properties help to rationalize why the L-Boussinesq model appears to perform
as well as it often does.

Being reassured that there are no fundamental structural differences between the
energetics of the KE/APE/GPE r system in the Boussinesq and compressible NSE,
the next step is to clarify the link with internal energy. One of the main results of
this paper, derived in Appendix B, is the following pair of evolution equations for the
dead and exergy components of internal energy:

d IE 0

dt
≈ D(KE ) + D(APE ), (2.4)

d IEexergy

dt
≈ −Wr,mixing , (2.5)

which were obtained by neglecting terms scaling as O(αP/(ρCp)), for some values
of α, P , ρ and Cp typical of the domain considered, where α is the thermal
expansion coefficient, P is the pressure, ρ is the density and Cp is the heat capacity
at constant pressure. The important point is that such a parameter is very small for
nearly incompressible fluids. For seawater, for instance, typical values encountered
in laboratory experiments carried out at atmospheric pressure are α = 2 × 10−4 K−1,
P = 105 Pa, Cp =4 × 103 J K−1kg−1, ρ = 103 m3kg−1, which yield αP/(ρCp) = 5 × 10−6.
In the deep oceans, this value can increase up to O(10−3), but this is still very small.
Equations (2.4) and (2.5) confirm that D(APE ) and D(KE ) are fundamentally similar
dissipative processes, in that they both convert APE and KE into dead internal
energy, while also confirming that Wr,mixing represents a conversion between IEexergy

and GPE r in both the laminar and turbulent cases.
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2.2. Analysis of idealized turbulent mixing events

To gain insight into the differences between D(APE ) and Wr,turbulent , the energy
budget of a hypothetical turbulent mixing event associated with shear flow instability
is examined in the light of (2.1)–(2.5). Typically, such events can be assumed to evolve
from laminar conditions with no APE . Once the instability is triggered, APE starts
to increase and oscillate until the instability subsides and the fluid re-laminarizes,
at which point APE returns to zero. The mixing event causes the shear flow to
lose a certain amount of kinetic energy |�KE |, as well as GPE r to increase by a
certain amount �GPE r , as a result of the partial smoothing out of the mean vertical
temperature gradient by molecular diffusion. Integrating (2.1)–(2.5) over the duration
of the mixing event yields

�KE = −C(KE , APE ) − D(KE ), (2.6)

�APE = 0 = C(KE , APE ) − D(APE ), (2.7)

�GPE r = Wr,turbulent + Wr,laminar , (2.8)

�IE 0 = D(APE ) + D(KE ), (2.9)

�IEexergy = −[Wr,laminar + Wr,turbulent ], (2.10)

where �(.) and the overbar denote a quantity’s net change over the time interval
and its time-integrated value, respectively. From an observational viewpoint, energy
conversion terms such as C(KE , APE ) are difficult to measure directly; moreover,
the results can be ambiguous (e.g. Barry et al. 2001 and references therein). As a
result, energy conversions are probably best inferred from measuring changes in the
different energy reservoirs, as this appears to be easier to do accurately. Multiple
possible inferences arise, however, if IE variations are not separated into their IEexergy

and IE 0 components. Figure 2 illustrates this point for a hypothetical turbulent
mixing experiment with hypothetical plausible numbers, by showing that a given
observed net change in IE of + 0.79 units can potentially be explained – in the
absence of any knowledge about the respective variations in IE 0 and IEexergy – as
either due to the conversion of 0.8 unit of KE into IE 0 minus the conversion of
0.01 unit of IEexergy into GPE r or by the conversion of 0.8 unit of KE into IE 0 plus
the conversion of 0.2 unit of APE into IE 0 minus the conversion of 0.21 unit of
IEexergy into GPE r . Although the first interpretation is the one implicit in Winters
et al. (1995) and currently favoured in the literature, it is not possible, based on
energy conservation alone, to reject the second interpretation. In fact, the only way to
discriminate between the two interpretations requires separately measuring IE 0 and
IEexergy variations, as only then are the two interpretations mutually exclusive.

2.3. An idealized numerical experimental protocol to test the two interpretations

To compute IE 0 and IEexergy , the knowledge of the temperature field and the Gibbs
function for the fluid considered (see Feistel 2003 in the case of water or seawater) is
in principle sufficient. It is hoped, therefore, that this study can stimulate laboratory
measurements of IE 0 and IEexergy , in order to provide experimental support (or
refutation, as the case may be), for the present ideas. In the meantime, numerical
methods are probably the only way to assess the accuracy of the two key formulae
(2.4) and (2.5), which physically argue (i) that the diffusively dissipated APE is
nearly entirely converted into IE 0; and (ii) that GPE r variations are nearly entirely
accounted for by corresponding variations in IEexergy .

To prove our point, energetically consistent idealized mixing events are constructed
and studied numerically. The procedure is as follows. One starts from a piece of
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Figure 3. Idealized depiction of the numerical experimental protocol used to construct
figure 4, as well as underlying the method for constructing figures 5 and 6. (a) A piece of strat-
ified fluid is cut into pieces of equal mass that are numbered from 1 to N , where N is the total
number of parcels. A random permutation is generated as a way to shuffle the parcels randomly
and adiabatically, in order to mimic the stirring process. (b) All the parcels lying at the same
level are homogenized to the same temperature by conserving the total energy of the system,
which mimics the horizontal mixing step illustrated in figure 1.

thermally stratified fluid initially lying in its Lorenz (1955)’s reference state in a
two-dimensional container with a flat bottom, vertical walls and a free surface
exposed at constant atmospheric pressure at its top. The fluid is then discretized
on a rectangular array of dimension Nx × Nz into discrete fluid elements having
all the same mass, �m = ρ�x�z , where x and z are the horizontal and vertical
coordinates respectively, as illustrated in figure 3. The initial stratification has a
vertically dependent temperature profile T (x, P ) = Tr (P ) regarded as a function of the
horizontal position x and the pressure P . Thousands of idealized mixing simulations
are then generated according to the following procedure:

(a) Initialization of the reference stratification. The initial stratification is discretized
as Ti,k = T (xi, Pk) = Tr (Pk), with xi = (i − 1)�x, i = 1, . . . Nx and Pk = Pmin +(k −
1)g�m, k =1, . . . Nz, where Pmin and Tr (Pk), k = 1, . . . Nz, are randomly generated
numbers such that Tmin � Tr (Pk) � Tmax that have been reordered in the vertical to
create a statically stable stratification, for randomly generated Tmin, Tmax and Pmin.

(b) Random stirring of the fluid parcels. The fluid parcels are then numbered from
1 to N = Nx × Nz and randomly shuffled by generating a random perturbation of
N elements, such that each parcel conserves its entropy in the rearrangement. Such
a step is intended to mimic the adiabatic stirring of the parcels associated with the
KE −→ APE conversion. The random stirring of the fluid parcels requires an external
amount of energy – called the stirring energy SE – which is diagnosed by computing
the difference in potential energy between the shuffled state and the initial state, i.e.

SE = (GPE + IE )shuffled − (GPE + IE )initial . (2.11)

The latter computation requires knowledge of the thermodynamic properties of the
fluid parcels. In this paper, such properties were estimated from the Gibbs function for
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Figure 4. (a) The increase of AGPE as a function of the stirring energy SE (see text for details).
Each point represents a different stratification shuffled by a different random permutation. The
continuous line represents the straight line of equation �AGPE = SE , which would describe
the energetics of the stirring process if AIE could be neglected. (b) The change of GPE r

as a function of the stirring energy SE dissipated by diffusive mixing. Here, the dotted line
is the straight line of equation �GPE r = Diffusively dissipated SE , which would describe the
energetics of turbulent mixing if the irreversible conversion AGPE −→ GPE r existed. (c) The
change in the dead internal energy IE 0 as a function of the diffusively dissipated stirring energy
SE. The dashed line is the straight line of equation �IE 0 = diffusively dissipated SE . The figure
shows a near-perfect correlation. (d ) The change in GPE r as a function of the exergy change.
The dashed line is the straight line of equation �GPE r = −�IEexergy . The figure shows, again,
a near-perfect correlation.

seawater of Feistel (2003) by specifying a constant value of salinity. Thermodynamic
properties such as internal energy, enthalpy, density, entropy, chemical potential, speed
of sound, thermal expansion and haline contraction are easily estimated by computing
partial derivatives with respect to temperature, pressure, salinity or any combination
thereof of the Gibbs function. The stirring energy SE is none other than Lorenz
(1955)’s APE of the shuffled state. Since the stirring leaves the background potential
energy unaffected, the energetics of the random shuffling is given by

�APE = �AGPE + �AIE = SE , (2.12)

�GPE r = �IE r = 0, (2.13)

where (2.12) states that the stirring energy SE is entirely converted into APE , while
(2.13) expresses the result that being a purely adiabatic process, the stirring leaves the
background reference quantities unaltered. Figure 4(a) depicts �AGPE as a function
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of SE for thousands of experiments, all appearing as one particular point on the
plot. According to this figure, �AGPE approximates �APE within about 10%. This
illustrates the point that for adiabatic processes, APE is well approximated by its
gravitational potential energy component as expressed by (1.27).

(c) Isobaric irreversible mixing of the fluid parcels. In the last step, all the fluid
parcels lying in the same layer are mixed uniformly to the same temperature, by
assuming an isobaric process that conserves the total enthalpy of each layer. Such a
process converts a fraction qSE of the APE into the background PE r , according to

�APE = �AGPE + �AIE = −qSE , (2.14)

�GPE r + �IE r = qSE , (2.15)

where 0 < q � 1. The factor q is needed here because mixing each layer uniformly
does not necessarily lead to a statically stable stratification; when this happens, the
resulting stratification still contains some APE = (1 − q)SE associated with the static
instability, so that q = 1 only when the mixed density profile is statically stable.
The change in �GPE r resulting from the irreversible mixing step is depicted as a func-
tion of the diffusively dissipated stirring energy qSE in figure 4(b). If the stirring energy
were entirely dissipated into GPE r , as is classically assumed, then all points should lie
on the line of equation �GPE r = qSE appearing as the dashed line in the figure. Even
though such a relation appears to work well in a number of cases, the vast majority of
the simulated points corresponds to cases where �GPE r is significantly smaller than
qSE , and even often negative as expected in the Fofonoff regime discussed above. On
the other hand, if one plots �IE 0 as a function of the diffusively dissipated stirring en-
ergy qSE , as well as �GPE r as a function of the exergy change �IEexergy = −�(IE r −
IE 0), as done in figure 4(c, d ) respectively, then a visually near-perfect correlation in
both cases is obtained. This is consistent with the following relations:

�IE 0 ≈ qSE , (2.16)

�GPE r ≈ −�(IE r − IE 0), (2.17)

and hence in agreement with the approximate (2.4) and (2.5). Equation (2.16)
empirically verifies (1.28).

2.4. Numerical estimates of B , Wr,mixing and D(APE ) as a function of APE

Having clarified the nature of the net energy conversions occurring in idealized
mixing events, we now turn to the estimation of the turbulent rates of the
three important conversion terms: B , Wr,mixing and D(APE ), which are affected by
molecular diffusion in the fully compressible Navier–Stokes equations, where B is the
work of expansion/contraction. As pointed out in the introduction, enhanced rates
fundamentally arise from turbulent fluids possessing large amounts of small-scale
APE . For this reason, this paragraph seeks to understand how the values of B ,
Wr,mixing and D(APE ) are controlled by the magnitude of APE .

We first focus on the work of expansion/contraction B , which takes the following
form:

B =

∫
V

αP

ρCp

∇ · (κρCp∇T ) dV +

∫
V

αP

ρCp

ρε dV −
∫

V

P

ρc2
s

DP

Dt
dV (2.18)

obtained by regarding ρ as a function of temperature and pressure. The part of B

affected by molecular diffusion is the first term on the right-hand side of (2.18) and
is the one under focus here. The second and third terms on the right-hand side are
respectively caused by the work of expansion due to the viscous dissipation Joule
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Figure 5. (a, b) The work of expansion/contraction B normalized by its laminar value
(obtained for APE = 0) as a function of a normalized APE for a particular stratification
corresponding to the classical regime, with (b) being a blow-up of (a). (c, d ) Same as the
above figure, for the same temperature stratification, but taken at a mean pressure of 50 dbar
instead of atmospheric pressure, which is sufficient to put the system in the Fofonoff regime.
The figures show that although B is usually negative in every case, it is nevertheless positive
for small values of APE in the classical regime, as expected from the L-Boussinesq theory.
The normalization constant APEmax corresponds to the overall maximum of APE for all
experiments.

heating and the adiabatic work of expansion/contraction. The study of these two
terms is beyond the scope of this paper.

The diffusive part of B was estimated numerically for thousands of randomly
generated stratifications, similar to the previous paragraph, using a standard finite
difference discretization of the molecular diffusion operator. Unlike in the previous
paragraph, however, all the randomly generated stratifications were computed from
only two different reference states pertaining to the classical and Fofonoff regimes
respectively, the results are depicted in figure 5(a–d ) (with figure 5b,d providing a blow-
up of figure 5a, c). The main result is that finite values of APE can make the diffusive
part of B negative and considerably larger by several orders of magnitude than in
the laminar APE = 0 case. This result is important, because it is in stark contrast to
what is usually assumed for nearly incompressible fluids at low Mach numbers. From
figure 5, it is tempting to conclude that there exists a well-defined relationship between
the diffusive part of B and APE , but in fact, the curve B =B(APE ) is more likely to
represent the maximum value achievable by B for a given value of APE . Indeed, it
is important to realize that a given value of APE can correspond to widely different
spectral distributions of the temperature field. In the present case, it turns out that
the random generator used tend to generate temperature fields with maximum power
at small scales, which in turn tend to maximize the value of B for a particular value
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Figure 6. (a, c) The rate of change of GPE r normalized by its laminar value as a function
of normalized APE , in the classical regime (a) as well as in the Fofonoff regime (c). The
stratification is identical to that of figure 5. (b, d ) The rate of diffusive dissipation of APE
normalized by Wr,mixing laminar value, as a function of a normalized APE , in the classical
regime (b), as well as for the Fofonoff regime (d ). The figure illustrates the fact that if the
former can be regarded as a good proxy for the latter in the classical regime, as is usually
assumed, this is clearly not the case in the Fofonoff regime. The two figures also illustrate the
fact that the former always underestimates the latter for a thermally stratified fluid, so that
observed values of mixing efficiencies obtained from measuring GPE r variations are necessarily
lower bounds for actual mixing efficiencies.

of APE . For the same value of APE , smoother stratifications exist with values of
B lying in between the x-axis and the empirical curve B =B(APE ), the latter being
expected to depend on the numerical grid resolution employed. Nevertheless, figure 5
raises the interesting question of whether the empirical curve B = B(APE ) could, in
fact, describe the behaviour of the fully developed turbulent regime, an issue that
could be explored using direct numerical simulations of turbulence.

The remaining two quantities of interest are Wr,mixing and D(APE ), which were
numerically estimated from the following expressions derived in Appendix B:

Wr,mixing =

∫
V

αrPr

ρrCpr

∇ · (κρCp∇T ) dV, (2.19)

D(APE ) =

∫
V

Tr − T

T
∇ · (κρCp∇T ) dV =

∫
V

κρCp∇T ·
(

T − Tr

T

)
dV. (2.20)

As for B , these two quantities were evaluated for thousands of randomly generated
stratifications as functions of APE , starting from the same reference states as before.
The results for Wr,mixing are depicted in figure 6(a, c) while the results for D(APE )
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are depicted in figure 6(b, d ), with figure 6(a, b) and figure 6(c, d ) corresponding to
the classical and Fofonoff regimes respectively. The purpose of the comparison is to
demonstrate that whereas there exist stratifications for which the two rates D(APE )
and Wr,mixing are nearly identical (figure 6a,b, the classical regime), as expected from
the classical literature about turbulent stratified mixing, it is also easy to construct
specific cases occurring in the oceans for which the two rates become of different
signs (figure 6c,d, the Fofonoff regime). The other important result is the relative
insensitivity of D(APE ) to the nonlinear character of the equation of state compared
with Wr,mixing , suggesting that the use of the L-Boussinesq model can still accurately
describe the KE/APE interactions even for strongly nonlinear equations of states,
although it would fail to do a good job of simulating the evolution of GPE r outside
the linear equation of state regime. This also suggests that the L-Boussinesq should
be adequate enough to study the mixing efficiency of turbulent mixing events over
a wide range of circumstances, provided that by mixing efficiency one means the
quantity γmixing = D(APE )/D(KE ), and not γmixing = Wr,turbulent/D(KE ). Finally, we
also experimentally verified (not shown) that D(APE ) is well approximated by the
quantity Wr,mixing − B , as is expected when AIE is only a small fraction of APE .

2.5. Synthesis

The energetics of freely decaying turbulence is summarized in figure 7 for the classical
(a) and the Fofonoff (b) regimes, with figure 7(c) attempting further synthesis by
combining AIE and AGPE into a single reservoir for APE and the two regimes into
a single diagram. Doing so makes figure 7(c) basically identical to the Boussinesq
energy flowchart depicted in figure 2(b). Interestingly, figure 7(b) suggests that the
Fofonoff regime may differ from the extensively studied classical regime in several
fundamental ways. Indeed, whereas both W and B act as net sinks of KE in the
classical regime, it appears possible in the Fofonoff regime for some fraction of
the KE dissipated into AIE to be recycled back to KE . This is reminiscent of the
positive feedback on the turbulent kinetic energy discussed by Fofonoff (1998, 2001),
who suggested that such a feedback would enhance turbulent mixing and hence
speed up the return to the classical regime after sufficient reduction of the vertical
temperature gradient. If real, such a mechanism would be very important to study
and understand, as potentially providing a limiting process on the maximum value
achievable by the buoyancy frequency, with important implications for numerical
ocean models parameterizations. In his papers, however, Fofonoff envisioned the
positive feedback on turbulent KE as being associated with the conversion of GPE r

into AGPE , but this goes against the findings of this paper arguing that GPE r can
only be exchanged with the exergy reservoir. Fofonoff’s feedback mechanism was
also criticized by McDougall, Church & Jackett (2003) on different grounds. While
the present results do not necessarily rule out Fofonoff’s feedback mechanism, they
suggest that the latter probably does not work as originally envisioned by Fofonoff, if
it works at all (McDougall et al. 2003’s arguments are not really conclusive either, as
they implicitly rely on the existence of the APE/GPE r conversion). In any case, the
issue seems to deserve more attention, given that many places in the oceans appear
to fall into Fofonoff’s regime.

3. Forced/dissipated balances in the oceans
3.1. A new approach to the mechanical energy balance in the oceans

Prior to revisiting MW98’s energy constraint (1.34), we start by establishing a number
of important results for mechanically and thermodynamically forced thermally
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Figure 7. The energetics of freely decaying turbulence for the classical regime (a), the Fofonoff
regime (b) and a synthesis of both regimes obtained by subsuming AGPE and AIE into APE
alone (c). Note the similarity in the energetics in (c) and that of the reinterpreted Boussinesq
energetics in figure 2(b).

stratified fluids, based on the results derived in Appendices A and B. The main
modifications brought about by the mechanical and thermodynamical forcing is the
apparition of forcing terms, i.e. terms involving the external forcing, in the evolution
equations for KE , APE and GPE r as follows:

d KE

dt
= −C(KE , APE ) − D(KE ) + G(KE ), (3.1)

d APE

dt
= C(KE , APE ) − D(APE ) + G(APE ), (3.2)

d GPE r

dt
= Wr,turbulent + Wr,laminar︸ ︷︷ ︸

Wr,mixing

−Wr,forcing , (3.3)

where G(KE ) is the work rate done by the external mechanical forcing, G(APE ) is
the work rate done by the buoyancy forcing and Wr, forcing is rate of change of GPE r

(usually a loss, hence the assumed sign convention) due to the buoyancy forcing.
The resulting energy transfers are illustrated in the energy flowchart depicted in
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D(KE)

G(APE)

D(APE)

C(KE, APE)
Wr,mixingWr,forcing

Figure 8. Energy flowchart for a mechanically and buoyancy-driven thermally stratified
fluid, where Qnet = Qheating − Qcooling . At leading order, the ‘dynamics’ (the KE/APE/IE 0

system) is decoupled from the ‘thermodynamics’ (the IEexergy/GPE r system). The
dynamics/thermodynamic coupling occurs due to the correlation between D(APE ) and
Wr,mixing , as well as due to the correlation between G(APE ) and Wr, forcing .

figure 8. This figure shows that at leading order, the ‘Dynamics’ – associated with
the reservoirs KE/APE/IE 0 – is decoupled from the ‘Thermodynamics’ – associated
with the GPE r/IEexergy energy reservoirs. Indirect coupling occurs, however, from the
fact that D(APE ) and Wr,turbulent on the one hand, and G(APE ) and Wr, forcing on the
other hand, are strongly correlated with each other.

3.1.1. Link between G(APE ) and Wr, forcing

Unlike in the L-Boussinesq model, G(APE ) and Wr, forcing differ from each other in
a real compressible fluid, for the same reasons that D(APE ) differs from Wr,turbulent ,
as is apparent from their exact formula given by (B 23) and (B 38) in Appendix B:

G(APE ) =

∫
S

T − Tr

T
κρCp∇T · ndS, (3.4)

Wr, forcing = −
∫

S

αr (Pr − Pa)

ρrCpr

κρCp∇T · ndS. (3.5)

In order to understand by how much Wr, forcing differs from G(APE ) in a real fluid, it
is useful to expand T as a Taylor series around P = Pr , i.e.

T = T (Pa) = Tr + Γr (Pa − Pr ) + · · · ,

where Γr =αrTr/(ρrCpr ) is the adiabatic lapse rate (e.g. Feistel 2003). As a result

T − Tr

T
= −Γr (Pr − Pa)

Tr

+ · · · ≈ −αr (Pr − Pa)

ρrCpr

. (3.6)

Inserting (3.6) into (3.4) reveals that G(APE ) and Wr, forcing are in fact equal at leading
order. In that case, therefore, the equality between G(APE ) and Wr, forcing that exactly
holds in the L-Boussinesq model appears to be a much better approximation than
the corresponding equality between D(APE ) and Wr,turbulent . For this reason, we shall
neglect the differences between G(APE ) and Wr, forcing in the following section.
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(a) Production of APE by wind forcing (b) Production of APE by surface cooling

conversion C(APE, KE) > 0conversion C(KE, APE) > 0 

Figure 9. Idealized depictions of mechanically driven (a) and buoyancy-driven (b) creation
of APE . (a) A wind blowing at the surface of a two-layer fluid causes the tilt of the layer
interface, resulting in a net C(KE ,APE ) > 0 conversion. (b) Localized cooling at high latitudes
sets the density of a fraction of the upper layer to that of the bottom layer, also inducing a
tilt in the layer interface. The return of the interface to equilibrium conditions (flat interface)
results in a net C(APE ,KE ) > 0 conversion.

3.1.2. Steady-state mechanical energy balance

Under steady-state conditions, summing (3.1) and (3.2) yields

G(KE ) + G(APE ) = D(APE ) + D(KE ), (3.7)

which simply states that in a steady state, the production of mechanical energy by
the wind and buoyancy forcing is balanced by the viscous and diffusive dissipations
of KE and APE , respectively. Figure 9 schematically illustrates how both the wind
and the buoyancy forcing can contribute to the creation of APE . The main novelty
here is to make it clear that D(APE ) is a ‘true’ dissipation mechanism, i.e. one
that degrades mechanical energy into internal energy (as does viscous dissipation),
not one converting mechanical energy into another form of mechanical energy (i.e.
GPE r ). This suggests regarding D(APE )+D(KE ) as the total dissipation of available
mechanical energy, ME = KE + APE .

In contrast, most studies of ocean energetics of the past decade have tended to
subsume the APE production and dissipation terms into the single term B = G(APE )−
D(APE ), in which case (3.7) becomes

G(KE ) + B = D(KE ). (3.8)

The problem in writing the mechanical energy balance under this form is that it
erroneously suggests that B , rather than G(APE ), is the work rate done by surface
buoyancy fluxes, and that viscous dissipation is the only form of mechanical energy
dissipation. For instance, Wang & Huang (2005) estimated B = O(1.5 GW) in the
oceans, in the context of the L-Boussinesq model, which is about three orders of
magnitude less than the work rate done by the wind and tides. In one of the most
recent reviews about ocean energetics by Kuhlbrodt et al. (2007), it is Wang & Huang
(2005)’s estimate for B that is presented as the work rate done by surface buoyancy
fluxes, while Oort et al. (1994)’s previous result for G(APE ) is regrettably omitted.

In the L-Boussinesq model, B takes the particular form B = κg(〈P 〉bottom − 〈P 〉top),
where 〈P 〉top and 〈P 〉bottom are the area-integrated surface and bottom density
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Ra 106 2 × 106 3 × 106 4 × 106 5 × 106

Φ 6.2 6.9 7.5 7.9 8.3

Table 1. Values of Φ as a function of the Rayleigh number Ra reproduced from figure 4
of Paparella & Young (2002). Values of Ra appropriate to the oceans are of the order
Ra =O(1020).

respectively, so that in the absence of mechanical forcing, (3.8) becomes

κg(〈P 〉bottom − 〈P 〉top) = D(KE ). (3.9)

In a study addressing the issue of horizontal convection, recently reviewed by Hughes
& Griffiths (2008), Paparella & Young (2002) proved that the left-hand side of (3.9)
must be bounded by κ times some finite constant when the fluid is forced by a
surface temperature condition, with no-normal flux applying everywhere else. This
result is now commonly referred to as the ‘anti-turbulence theorem’, for the bound
implies that D(KE ) must vanish in the ‘inviscid’ limit (used here to mean both
vanishing molecular viscosity and diffusivity), thus violating the so-called zeroth law
of turbulence, an empirical law grounded in many observations showing that the
viscous dissipation of KE in homogeneous turbulent fluid flows remains finite and
independent of molecular viscosity as the Reynolds number is increased indefinitely.

3.1.3. Actual implications of the anti-turbulence theorem

As shown by Wang & Huang (2005), Paparella & Young (2002)’s bound suggests
that the oceanic viscous dissipation D(KE ) would be less than 1.5 GW in the absence
of mechanical forcing. Since this value is several orders of magnitude than observed
oceanic values of D(KE ), the result demonstrates that mechanical forcing is essential
to account for the latter. By itself, however, the result says nothing about whether
mechanical forcing is also essential to account for the observed turbulent rates of
diapycnal mixing, since, as far we are aware, the values of Rf and γmixing for horizontal
convection have never been determined before. Indeed, the anti-turbulence theorem
only imposes that the difference B =G(APE ) − D(APE ) be small, but this does
not forbid G(APE ) and D(APE ) to be individually very large. In fact, the current
theoretical and numerical evidence suggests that G(APE ) and D(APE ) increase
with the Rayleigh number Ra . Indeed, this is suggested by Paparella & Young
(2002)’s numerical experiments, which show the function Φ (given by (1.1)), which
we interpreted as a measure of the Cox number O(KT /κ) (and hence of D(APE )) to
increase with Ra = gα�T H 3/(νκ) as tabulated in table 1. Although such values appear
to be much smaller than observed O(102–103) Cox numbers, they also correspond to
Rayleigh numbers that are about 13–14 orders of magnitude smaller than occurring in
the oceans, leaving open the possibility for Φ to be possibly much larger, possibly as
large as encountered in the oceans. In a related study, Siggers, Kerswell & Balmforth
(2004) derived a bound on Φ (which they related to a horizontal Nusselt number),
which does not exclude the possibility that horizontal convection, on its own, could
support a north-south heat transport of the observed magnitude. A further discussion
of the physics of horizontal convection based on laboratory experiments is provided
by Mullarney, Griffiths & Hughes (2004). In summary, while the anti-turbulence
theorem demonstrates the need for mechanical forcing to account for the observed
values of kinetic energy dissipation, the question of whether mechanical forcing is
needed to sustain diapycnal mixing rates and a north-south heat transport of the
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observed magnitude is still largely open. In particular, it is important to point out
that although the anti-turbulence theorem rules out the possibility of elevated values
of kinetic energy dissipation in the absence of mechanical forcing, it does not rule
out the possibility of elevated values of diapycnal mixing rates. In this respect,
Paparella & Young (2002)’s suggestion that horizontal convection should be regarded
as ‘non-turbulent’ appears somewhat misleading.

3.1.4. Back-of-the-envelope estimate of G(APE ) for the world oceans

In order to make progress on the above issue, it is essential to determine how
large G(APE ) can be in the oceans. As mentioned above, Oort et al. (1994) inferred
G(APE ) = 1.2 ± 0.7 TW from observations, and hence to be nearly as large as the
work rate done by the wind, but this estimate was questioned by MW98 on the
basis of Sandstrom’s ‘theorem’. A possible source of error in Oort et al. (1994)’s is its
reliance on the so-called Lorenz approximation, which is often said to overestimate
G(APE ) (e.g. Huang 1998).

In fact, the simplest method to convince oneself that G(APE ) must be large in the
oceans comes from the result that G(APE ) ≈ Wr, forcing established previously, which
states that if the rate of decrease of GPE r due to the buoyancy forcing is large, so
must it be the case for G(APE ). Since MW98 inferred Wr, forcing ≈ 0.4 TW, one can
immediately conclude G(APE ) ≈ 0.4 TW, which, it turns out, is close to the lower
bound of Oort et al. (1994)’s estimate, consistent with the idea that the method used
by the latter should overestimate G(APE ). This immediately establishes that MW98’s
assumption that G(APE ) is small is inconsistent with their assumption that Wr, forcing

is large. It also establishes that Sandstrom’s ‘theorem’, whatever it means, cannot say
anything meaningful about G(APE ).

An independent way to estimate G(APE ) is by using the exact formula for G(APE )
or Wr, forcing given by (3.4) and (3.5) recalled above. In these formulae, Tr is the
temperature that a surface parcel would have if lifted adiabatically to its reference
level. Since the oceans are on average heated and cooled where they are the warmest
and coolest respectively, the parcels’ reference level will be on average close to the
surface in the warm regions, but much deeper in the cold regions. Equation (3.4) must
therefore be dominated by surface cooling. Using the near equality between G(APE )
and Wr, forcing , we take as our estimate for G(APE ) the expression:

G(APE ) ≈
(

αrPr

ρrCpr

)
cooling

Qcooling (3.10)

with a value of (αrPr/(ρrCpr ))cooling appropriate to the regions of cooling. Using
the values α = 5 × 10−5, K−1, Pr = 2000 dbar= 2 × 107 Pa, ρr = 103 kg, Cpr =4 ×
103 J kg−1K−1, and Qcooling =2 PW yields

G(APE ) =
5 × 10−5 × 2 × 107

103 × 4 × 103
× 2 × 1015 W = 0.5 TW,

which is very close to Munk & Wunsch (1998)’s estimate for Wr, forcing and is consistent
with Oort et al. (1994)’s lower bound for G(APE ). The large value of G(APE ) suggests
that buoyancy forcing can actively participate in maintaining turbulent diapycnal
mixing in the oceans, which should be reflected by a higher value of γmixing than the
value γmixing = 0.2 currently used in the literature about the subject.
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3.2. A new look at the GPE r balance and Munk & Wunsch (1998)’s theory

Having clarified the ‘available mechanical energy balance’, we now turn to the GPE r

budget, with the aim of elucidating the assumptions underlying MW98’s constraint
on the energy requirement for sustaining diapycnal mixing in the oceans. In a steady
state, the GPE r budget given by (3.3) becomes

Wr,mixing = Wr,turbulent + Wr,laminar = Wr, forcing , (3.11)

where the explicit expressions for Wr,mixing and Wr, forcing are given at leading order by
the following expressions:

Wr,mixing ≈
∫

V

κρCp∇T · ∇
(

αrTr

ρrCpr

)
dV, (3.12)

Wr, forcing ≈
∫

S

(
αrPr

ρrCpr

)
κρCp∇T · ndS, (3.13)

which are valid for a fully compressible thermally stratified ocean where n is the
unit vector normal to the surface. Note that for the L-Boussinesq model, implicitly
considered by MW98, Wr,mixing can be rewritten as

Wr,mixing ≈
∫

V

κ‖∇zr‖2αr

∂Tr

∂zr

dV ≈
∫

V

KT ρ0N
2
r dV (3.14)

by using the definition of turbulent diapycnal diffusivity of Winters et al. (1995) for
KT . As (3.14) is exactly the expression used by MW98, this establishes that MW98’s
analysis actually pertains to the GPE r budget, not the GPE budget, and that their
results should logically follow from (3.11).

To show that this is indeed the case, simply use the definition
γmixing = D(APE )/D(KE ) in combination with the mechanical energy balance to
express D(APE ) in terms of the total mechanical energy input G(APE ) + G(KE )
as follows:

D(APE ) =
γmixing

1 + γmixing

[G(APE ) + G(KE )] = Rf [G(APE ) + G(KE )], (3.15)

where Rf = γmixing/(1 + γmixing ) is the dissipation flux Richardson number defined in the
introduction. Now, writing Wr,turbulent = ξD(APE ) as proposed in this paper to account
for a nonlinear equation of state, neglecting Wr,laminar compared with Wr,turbulent and
using the result that Wr, forcing ≈ G(APE ) demonstrated previously, (3.11) becomes

ξD(APE ) ≈ G(APE ). (3.16)

The desired result is obtained by combining (3.15) and (3.16), which yields

G(KE ) ≈ 1 + (1 − ξ )γmixing

ξγmixing

G(APE ) =
1 − ξRf

ξRf

G(APE ). (3.17)

This formula generalizes MW98’s equation (1.34) to account for a nonlinear equation
of state, the effects of which are contained in the single parameter ξ < 1. It is easily
seen that MW98’s equation (1.34) is recovered simply by setting ξ =1 in (3.17), using
the result that G(APE ) ≈ Wr, forcing . This formula is further extended and discussed by
Tailleux & Rouleau (2009), in the context of idealized experiments of mechanically
stirred horizontal convection.

The confirmation that G(APE ) should actually be nearly as large as the work
rate done by the mechanical forcing makes it possible for buoyancy forcing to drive
possibly a very large fraction of the oceanic turbulent diapycnal mixing, which should
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γmixing = 0.2 γmixing = 0.5 γmixing = 1

ξ = 1 2 TW 0.8 TW 0.4 TW
ξ = 0.5 4.4 TW 2TW 1.2 TW

Table 2. Mechanical energy requirements on G(KE ) depending on different assumed values
for the dissipations ratio γmixing and nonlinearity parameter ξ , as computed from (3.17) using
G(APE ) = 0.4 TW, in line with Munk & Wunsch (1998)’s assumptions.

be reflected in an appropriate value for γmixing . As noted in the introduction, buoyancy-
driven turbulent mixing is usually significantly more efficient than mechanically driven
turbulent mixing, suggesting that a value of γmixing significantly larger than the value
γmixing =0.2 should be used in (3.17). Likewise, the fact that the nonlinear equation
of state for seawater is found to strongly affect changes in GPE r , as shown in the
previous section, suggests that a value of ξ between 0 and 1 should be used (note
that ξ cannot be negative if a steady state is to exist). A detailed discussion of
which values should actually be used for γmixing and ξ is beyond the scope of this
paper, however, as much more needs to be understood about buoyancy-driven and
mechanically driven turbulent mixing in a non-Boussinesq stratified fluid before one
may become confident enough to speculate on the ‘right’ values. In order to fix
ideas, however, it is useful to compute the energy requirement on turbulent mixing
predicted by (3.17) for plausible values of ξ and γmixing , as reported in table 2, under
the assumption that Wr, forcing ≈ G(APE ) ≈ 0.4 TW.

As expected, decreasing ξ at fixed γmixing increases the requirement on G(KE ). This
is consistent with Gnanadesikan et al. (2005)’s conclusions that cabelling (i.e. the
contraction upon mixing stemming from the nonlinear character of the equation of
state for seawater) increases the requirement on G(KE ). Likewise, increasing γmixing

at fixed ξ decreases the requirement on G(KE ). This is consistent with Hughes
& Griffiths (2006)’s argument that the requirement on G(KE ) can be decreased
if the entrainment of ambient water by the sinking cold plumes is accounted for.
Indeed, taking into account entrainment effects is equivalent to increasing γmixing ,
since entrainment is physically associated with buoyancy-driven turbulent mixing, as
far as we understand the issue. Note that decreasing ξ seems to require increasing
γmixing if one accepts the idea that no more than 2 TW is available from mechanical
energy sources to stir the oceans. Alternatively, one could also perhaps question the
assumption that the oceans are truly in a steady state.

4. Summary and conclusions
In this paper, we extended the APE framework of Winters et al. (1995) to the fully

compressible Navier–Stokes equations, with the aims of clarifying (i) the nature of the
energy conversion taking place in turbulent stratified fluids; and (ii) the role of the
surface buoyancy fluxes in Munk & Wunsch (1998)’s constraint on the mechanical
sources of stirring required to sustain diapycnal mixing in the oceans. The most
important results are that the well-known turbulent increase in background GPE r ,
commonly thought to occur at the expense of the diffusively dissipated APE , actually
occurs at the expense of (the exergy part of) IE . On the other hand, the APE
dissipated by molecular diffusion is found to be dissipated into (the dead part of) IE ,
i.e. the same kind of IE the viscously dissipated KE is converted into, not into GPE r .
Turbulent stirring, therefore, should not be viewed as introducing a new form of
mechanical-to-mechanical APE/GPE r conversion, but simply as enhancing the



366 R. Tailleux

existing IE/GPE r conversion rate, in addition to enhancing the viscous dissipation
rate of KE , as well as the diffusive entropy production and APE dissipation rates.
These results are important, for they significantly alter the current understanding
on the nature of turbulent diapycnal mixing and its links with the dissipation of
mechanical energy and turbulent increase of GPE r . In particular, the possibility
that GPE r may decrease as a result of turbulent mixing, not necessarily increase
as is commonly thought, is to be emphasized. Moreover, the fact that the turbulent
increase of GPE r is associated with an enhanced IE/GPE r conversion physically
implies that compressible effects must be considerably larger than previously thought,
raising fundamental questions about the possible limitations of the widely used
incompressible assumption in the modelling of fluid flows at low Mach numbers,
which further work should elucidate. Finally, the present results also have implications
for the way one should quantify the efficiency of mixing in turbulent stratified fluids,
with new definitions for the mixing efficiency γmixing (or more accurately dissipations
ratio) and the flux Richardson number Rf being proposed in the introduction, where
they are also compared with existing definitions.

A significant achievement of the extended APE framework is to allow for a more
rigorous and general rederivation of MW98’s result (our (3.17)), which is also valid
for a non-Boussinesq ocean and results in the appearance of a nonlinearity parameter
ξ � 1, with MW98’s results being recovered for ξ = 1. The main new result here is
the finding that the work rate done by the surface buoyancy fluxes G(APE ) should
be numerically comparable with Wr, forcing . This is important because, while Wr, forcing is
currently widely agreed to be large O(0.4 TW), G(APE ) has been widely thought to
be negligible on the basis of MW98’s argument that this is required by Sandstrom’s
‘theorem’. The result therefore demonstrates that G(APE ) is as important as the
mechanical forcing in driving and stirring the oceans, in agreement with Oort et al.
(1994)’s previous conclusions. The two main consequences are that: (i) there is no
reason to reject the idea that the oceans are a heat engine and that the north-south heat
transport is mostly the result of the buoyancy forcing, usually thought to be the case
prior to MW98’s study (e.g. Colin de Verdière 1993); and (ii) the overall value of γmixing

in the oceans is likely to be significantly larger than the value of γmixing = 0.2 currently
used, as seems to be required by the large magnitude of G(APE ), given that buoyancy-
driven turbulent mixing has a significantly higher γmixing than mechanically driven
turbulent mixing in general. Note that increasing γmixing decreases the requirement
on the mechanical sources of stirring, thereby providing a natural way to remove
the apparent paradoxical result of a shortfall in the mechanical stirring energy that
arises when γmixing = 0.2 is used in (3.17) for ξ =1. The extended APE framework
may also be used to revisit the assumed implications of Paparella & Young (2002)’s
anti-turbulence ‘theorem’, the main conclusion being that horizontal convection may,
in fact, support elevated values of diapycnal mixing, in contrast to what is usually
assumed. It seems important to stress, however, that even if one could prove that
surface buoyancy fluxes could sustain on their own diapycnal mixing rates as large as
observed, it would not prove that the actual buoyancy-driven component of the ocean
circulation is not mechanically controlled. Indeed, it is essential to recognize that both
G(KE ) and G(APE ) depend not only on the external forcing parameters but also
strongly on the actual ocean circulation and stratification, which necessarily implies
a mechanical control of the buoyancy-driven circulation and vice versa. In other
words, even though the present study disagrees with MW98’s contention that surface
buoyancy fluxes do not work or stir the oceans, there should be little doubt that
even if the MOC is expected to be primarily buoyancy-driven, it is also mechanically
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controlled in ways that are not fully understood. In this respect, therefore, MW98
deserves credit for challenging the idea that the behaviour of the buoyancy-driven
circulation can be understood independently of its link with the mechanical forcing.

An important challenge ahead is to extend the present framework for dealing with
an equation of state that depends on salinity, which gives rise to the possibility of
double-diffusion effects and storing energy in chemical form. Such extensions are
needed to better connect the present results to many laboratory experiments based on
the use of compositionally stratified fluids, although the present evidence is that the
use of a linear equation of state is probably accurate enough to describe the latter. To
that end, many technical difficulties need to be overcome. Indeed, salinity complicates
the definition of Lorenz (1955)’s reference state to such an extent that it is not even
clear that such a state can be uniquely defined (e.g. Huang 2005), as may be the
case in presence of humidity in the atmosphere (e.g. Tailleux & Grandpeix 2004). A
potentially important generalization would also be to further decompose the internal
energy in order to isolate the available acoustic energy considered by Bannon (2004),
which in the present paper is included as part of our definition of APE . Finally, more
work is required to understand how to fix the values of ξ and γmixing in (3.17) in the
actual oceans.
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Appendix A. Energetics of Incompressible Navier–Stokes Equations
A.1. Boussinesq equations with equation of state nonlinear in temperature

This appendix documents the energetics of the Boussinesq system of equations that
form the basis for most inferences about stratified turbulence for fluid flows at low
Mach numbers and which is commonly used in the theoretical and numerical study
of turbulence (e.g. Winters et al. 1995; Caulfield & Peltier 2000; Staquet 2000; Peltier
& Caulfield 2003). In order to go beyond the usual case of a linear equation of state,
a slight generalization is introduced by allowing the thermal expansion coefficient to
vary with temperature. The resulting set of equations is therefore as follows:

Dv

Dt
+

1

ρ0

∇P = −gρ

ρ0

ẑ + ν∇2v, (A 1)

∇ · v = 0, (A 2)
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DT

Dt
= κ∇2T , (A 3)

ρ(T ) = ρ0

[
1 −

∫ T

T0

α(T ′)dT ′
]

, (A 4)

where v = (u, v, w) is the three-dimensional velocity field, P is the pressure, ρ is the
density, T is the temperature, ν =μ/ρ is the kinematic viscosity, μ is the (dynamic)
viscosity, κ is the molecular diffusivity, g is the acceleration of gravity and ρ0 is a
reference density. The classical Boussinesq model, called the L-Boussinesq model in
this paper, is simply recovered by taking α to be a constant in (A 4). In that case,
(A 3) and (A 4) may be combined to obtain the following diffusive model for density:

Dρ

Dt
= κ∇2ρ (A 5)

as assumed in many numerical studies of turbulence (e.g. Winters et al. 1995; Caulfield
& Peltier 2000; Staquet 2000; Peltier & Caulfield 2003). When the temperature
dependence of α is retained, the resulting model is called the NL-Boussinesq model.

A.2. Standard energetics

Evolution equations for the KE and GPE are obtained by the standard procedure
(e.g. Batchelor 1967; Landau & Lifshitz 1987), assuming that the system is forced
mechanically by an external stress τ , and thermodynamically by external heat fluxes,
both assumed to act at the surface boundary located at z = 0. The first equation
is premultiplied by ρ0v and volume-integrated. After reorganization, the equation
becomes

d KE

dt
=

d

dt

∫
V

ρ0

v2

2
dV =

∫
∂V

τ · usdS︸ ︷︷ ︸
G(KE )

−
∫

V

ρgw dV︸ ︷︷ ︸
W

+

∫
V

ρ0ε dV︸ ︷︷ ︸
D(KE )

, (A 6)

where W is the so-called density flux, D(KE ) is the viscous dissipation rate of kinetic
energy and G(KE ) is the rate of work done by the external stress. The time evolution
of the total gravitational potential energy of the fluid, i.e. the volume integral of ρgz,
is

d GPE

dt
=

d

dt

∫
V

ρgz dV =

∫
V

ρgw dV︸ ︷︷ ︸
W

−
∫

V

ρ0gzακ∇2T dV︸ ︷︷ ︸
B

, (A 7)

where B is the Boussinesq approximation of the work of expansion/contraction. In
the present case, it is possible to derive an explicit analytical formula for B:

B = −
∫

V

gzρ0ακ∇2T dV =

∫
V

κgρ0α
∂T

∂z
dV +

∫
V

κρ0gz
dα

dT
(T )‖∇T ‖2 dV

= κg[〈ρ〉bottom − 〈ρ〉top]︸ ︷︷ ︸
BL

+

∫
V

κρ0gz
dα

dT
(T )‖∇T ‖2 dV, (A 8)

by using integration by parts, and using the fact that the surface term vanishes
because the surface is by assumption located at z = 0, where 〈ρ〉bottom and 〈ρ〉top

denote the surface-integral of the bottom and top values of density. For a linear
equation of state, B = BL will, in general, be small because of the smallness of the
molecular diffusivity κ , and finite top–bottom density difference. When α increases
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with temperature, however, B may become significantly larger than BL in turbulence
strong enough to make ‖∇T ‖2 large for the second term in (A 8) to overcome BL,
pointing out the possible critical role of nonlinearity of the equation of state in
strongly turbulent fluids.

A.3. Lorenz (1955)’s available energetics

We now seek evolution equations for the available and unavailable parts of the
gravitational potential energy, as previously done by Winters et al. (1995) in the case
of the L-Boussinesq equations. By definition, the expression for the GPE r is

GPE r =

∫
V

ρrgzr dV, (A 9)

where zr = zr (x, t) and ρr = ρr (zr, t) are the vertical position and the density of the
parcels in the Lorenz (1955)’s reference state. In Boussinesq models, fluid parcels
are assumed to conserve their in situ temperature in the reference state, so that
Tr (zr, t) = T (x, t). Taking the time derivative of (A 9) yields

d GPE r

dt
=

∫
V

gzr

Dρr

Dt
dV +

∫
V

gρr

Dzr

Dt
dV︸ ︷︷ ︸

=0

= −
∫

V

gzrρ0ακ∇2T dV

= −
∫

∂V

gzrρ0ακ∇T · n dS +

∫
V

κρ0g∇T · ∇(αzr )dV

= −Wr, forcing +

∫
V

κρ0g‖∇zr‖2 ∂(αzr )

∂zr

∂Tr

∂zr

dV︸ ︷︷ ︸
Wr,mixing

, (A 10)

where Wr, forcing is the rate of change of GPE r due to the external surface
heating/cooling. For a Boussinesq fluid, this term is identical to the APE production
rate G(APE ), as shown in the following, i.e. Wr, forcing = G(APE ). The above formula
was obtained by using the following intermediate results:

∇[T (x)] = ∇[Tr (zr (x))] =
∂Tr

∂zr

∇zr, (A 11)

∇[α(T )zr ] = ∇[α(Tr (zr ))zr ] =
∂(αzr )

∂zr

∇zr, (A 12)

as well as the important result that the integral involving the term Dzr/Dt vanishes
identically established by Winters et al. (1995). In this paper, the result was established
by using an explicit formula for the reference stratification. An alternative way to
recover such a result is achieved by noting that the velocity vr = (Dxr/Dt, Dzr/Dt)
of the fluid parcels in the reference state must satisfy the continuity equation

∇r · vr = 0, (A 13)

where ∇r is the divergence operator in the reference space state (xr, yr, zr ), from
which it follows that the surface integral of Wr,mixing = Dzr/Dt along each constant
zr level must vanish, which implies Winters et al. (1995)’s result. The equation for
APE = AGPE = GPE − GPE r becomes

d APE

dt
=

d GPE

dt
− d GPE r

dt
= W − (Wr,mixing − B) + Wr, forcing = G(APE ) + W − D(APE ), (A 14)
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where

D(APE ) = Wr,mixing − B

=

∫
V

ρ0gακ‖∇zr‖2 ∂Tr

∂zr

dV − BL︸ ︷︷ ︸
DL(APE )

+

∫
V

κρ0g(zr − z)
dαr

dTr

‖∇zr‖2

(
∂Tr

∂zr

)2

dV︸ ︷︷ ︸
DNL(APE )

,

(A 15)

by using the results that∫
V

ρ0gκ
dα

dT
‖∇T ‖2 dV =

∫
V

ρ0gκ
dαr

dTr

‖∇zr‖2

(
∂Tr

∂zr

)2

dV, (A 16)∫
V

ρ0gκ‖∇zr‖2 ∂(αzr )

∂zr

∂Tr

∂zr

dV =

∫
V

ρ0gκ‖∇zr‖2

(
1 + zr

dαr

dTr

∂Tr

∂zr

)
∂Tr

∂zr

dV. (A 17)

Empirically, it is usually found that D(APE ) > 0, which is not readily apparent from
the form of D(APE ), and for which a rigorous mathematical proof remains to be
established. Interestingly, while both Wr,mixing and B appear to be strongly modified
by a temperature-dependent α, this is much less so for their difference D(APE ),
which is usually found empirically to be well approximated by its ‘linear’ part
DL(APE ). This is important because it clearly establishes that D(APE ) and Wr,mixing

may be significantly different when the temperature dependence of α is retained,
in contrast to what is generally admitted based on the L-Boussinesq model. This
suggests that results based on the study of the L-Boussinesq model are likely to be
more robust and accurate for the description of the KE/APE dynamics than for the
description of GPE r . The condition for |DNL(APE )| � |DL(APE )| to be satisfied is
that dαr/dTr |dTr/dzr ||zr −z| � 1, which appears to be satisfied in practice for water or
seawater. Whether this is also true for other types of fluids still needs to be established.

Appendix B. Energetics of compressible Navier–Stokes Equations
B.1. Compressible Navier–Stokes Equations

This appendix generalizes Winters et al. (1995)’s results to the fully compressible
Navier–Stokes equations, which are written as

ρ
Dv

Dt
+ ∇P = −ρg ẑ + ∇ · S, (B 1)

Dρ

Dt
+ ρ∇ · v = 0, (B 2)

DΣ

Dt
=

Q̇

T
=

ρε − ∇ · Fq

ρT
, (B 3)

I = I (Σ, υ), (B 4)

T = T (Σ, υ) =
∂I

∂Σ
, P = P (Σ, υ) = − ∂I

∂υ
. (B 5)

In the present description, the three-dimensional Eulerian velocity field v =(u, v, w),
the specific volume υ = 1/ρ (with the density ρ) and the specific entropy Σ are
taken as the dependent variables, with the thermodynamic pressure P and the in
situ temperature T being diagnostic variables in (B 4) and (B 5), where I is the
specific internal energy, regarded as a function of Σ and υ . More useful notations
include: D/Dt = ∂/∂t + (v · ∇) is the substantial derivative, ε is the dissipation rate
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of kinetic energy, Fq = −kT ρCp∇T is the diffusive heat flux, Cp is the specific heat
capacity at constant pressure, kT is the molecular diffusivity for temperature, g is the
acceleration of gravity and ẑ is a normal unit vector pointing upward. Moreover, S
is the deviatoric stress tensor:

Sij = μ

(
∂ui

∂xj

+
∂uj

∂xi

)
+

(
λ − 2μ

3

)
δij

∂u�

∂x�

(B 6)

in the classical tensorial notation (i.e. Landau & Lifshitz 1987), where Einstein’s
summation convention for repeated indices has been adopted and δij is the Kronecker
delta. The parameters μ and λ are the shear and the bulk (or volume) viscosity
respectively.

B.2. Standard energetics

The derivation of evolution equations for the standard forms of energy in the context
of the fully compressible Navier–Stokes equations is a standard exercise (e.g. de Groot
& Mazur 1962; Landau & Lifshitz 1987; Griffies 2004), so only the final results are
given. In the standard description of energetics, only the volume-integrated KE, GPE
and IE are considered:

KE =

∫
V

ρ
v2

2
dV, GPE =

∫
V

ρgz dV IE =

∫
V

ρI (Σ, υ) dV, (B 7)

whose standard evolution equations are respectively given by

d KE

dt
= −

∫
V

ρgw dV︸ ︷︷ ︸
W

+

∫
V

P
Dυ

Dt︸ ︷︷ ︸
B

dm + G(KE ) − D(KE ) − Pa

dVol

dt
, (B 8)

d GPE

dt
=

∫
V

ρgw dV︸ ︷︷ ︸
W

, (B 9)

d IE

dt
=

∫
V

ρQ̇ dV −
∫

V

P
Dυ

Dt
dm︸ ︷︷ ︸

B

= D(KE ) + Qheating − Qcooling − B, (B 10)

where G(KE ) is the rate of work done by the mechanical sources of energy on the fluid,
Qheating (respectively Qcooling ) is the surface-integrated rate of heating (respectively
cooling) due to the thermodynamic sources of energy, dm = ρdV and Vol is the
total volume of the fluid; additional definitions and justifications are given below.
Summing (B 8)–(B 10) yields the following evolution equation for the total energy,
T E =KE + GPE + IE :

d T E

dt
= G(KE ) + Qheating − Qcooling − Pa

dVol

dt
, (B 11)

which states that the total energy of the fluid is modified by the rate of
(a) work done by the mechanical sources of energy;
(b) heating/cooling done by the thermodynamic sources of energy; and
(c) work done by the atmospheric pressure Pa against the volume changes of the

fluid.
As these derivations are quite standard, justifications for the above equations are
briefly outlined. Thus, the KE equation (B 8) is classically obtained by multiplying
the momentum equation by v and integrating over the volume domain. The term
W results from the product of v with the gravitational force vector, whereas the
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product v · ∇P = ∇ · (P v) − P ∇ · v = ∇ · (P v) − (P/υ)Dυ/Dt yields the work of
expansion/contraction minus the work done by the atmospheric pressure against the
total volume changes. The product of the velocity vector with the stress tensor is
written as the sum G(KE ) − D(KE ), where G(KE ) represents the work input due to
the external stress and D(KE ) represents the positive dissipation of kinetic energy.
The general expression for the mechanical energy input is

G(KE ) =

∫
∂V

vS · ndS =

∫
∂V

τ · vdS, (B 12)

where vS is the vector with components (Sv)j = Sijui , while Sn = τ is the stress
applied along the surface boundary enclosing the fluid. G(KE ) is therefore the work
of the applied stress done against the fluid velocity. If one assumes a no-slip boundary
condition on all solid boundaries, then this work is different from zero only on the
free surface. The function D(KE ) is the dissipation function

D(KE ) =

∫
V

{
μ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂u�

∂x�

)2

+ λ(∇ · v)2

}
dV, (B 13)

where, again, the summation convention for repeated indices has been used (e.g.
Landau & Lifshitz 1987). The equation for GPE (B 9) is simply obtained by taking
the time derivative of its definition, using the fact that D(ρgzdV )/Dt = ρgw, since
D(ρdV )/Dt = 0 from mass conservation. The equation for IE (B 10) results from
the fact that the differential of internal energy in the entropy/specific volume
representation is given by dI = T dΣ − Pdυ . The terms Qheating and Qcooling represent
the surface-integrated net heating and cooling, respectively, going through the surface
enclosing the domain.

B.3. Available energetics

In this paragraph, we seek to derive separate evolution equations for the available and
un-available parts of the total potential energy PE = IE + GPE + PaVol , as initially
proposed by Lorenz (1955), building upon ideas going back to Margules (1903).
Specifically, PE is decomposed as follows:

PE =

∫
V

ρ[I (Σ, υ) + gz] dV + PaVol

=

∫
V

ρ[I (Σ, υ) + gz] dV −
∫

V

ρ[I (Σ, υr ) + gzr ] dV + Pa(Vol − Vol,r )︸ ︷︷ ︸
APE

+

∫
V

ρ [I (Σ, υr ) + gzr ] dV + PaVol,r︸ ︷︷ ︸
PE r

, (B 14)

where PE r is the potential energy of Lorenz (1955)’s reference state and APE = PE −
PE r is the available potential energy. As is well known, the reference state is the state
minimizing the total potential energy of the system in an adiabatic rearrangement of
the fluid parcels. From a mathematical viewpoint, Lorenz (1955)’s reference state can
be defined in terms of a mapping taking a parcel located at (x, t) in the given state to
its position (xr , t) in the reference state, such that the mapping preserves the specific
entropy Σ and mass ρdV of the parcel, viz.,

Σ(x, t) = Σ(xr , t) = Σr (zr, t), (B 15)

ρ(x, t)dV = ρ(xr , t)dVr = ρr (zr, t)dVr, (B 16)
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where the second condition can be equivalently formulated in terms of the Jacobian
J = ∂(xr )/∂(x) of the mapping between the actual and reference state as follows:

ρ(x, t) = ρ(xr , t)
∂(xr )

∂(x)
= ρr (zr, t)

∂(xr )

∂(x)
. (B 17)

Prior to deriving evolution equation for PE r and APE , it is useful to mention three
important properties of the reference state, namely:

(a) The density ρr = ρr (zr, t) and the pressure Pr =Pr (zr, t) of the Lorenz (1955)’s
background reference state are functions of zr alone (and time);

(b) The background density ρr and the pressure Pr are in hydrostatic balance at all
times, i.e. ∂Pr/∂zr = −ρrg (this is a consequence of the reference state being the state
minimizing the total potential energy in an adiabatic rearrangement of the parcels);

(c) The velocity vr = (Dxr/Dt, Dyr/Dt, Dzr/Dt) of the parcels in the reference state
satisfies the usual mass conservation equation:

Dυr

Dt
= υr∇r · vr , (B 18)

where ∇r · vr is the velocity divergence expressed coordinates system of the reference
state, which is a consequence of the mass of the fluid parcels being conserved by the
mapping between the actual and the reference states.
Equation (B 18) is important for it allows an easy demonstration of the following
result:∫

V

ρPr

Dυr

Dt
dV =

∫
Vr

ρrPr

Dυr

Dt
dVr =

∫
Vr

Pr∇r · vr dVr

=

∫
∂Vr

Prvr · nr dSr −
∫

Vr

vr · ∇Pr dVr = Pa

dVol,r

dt
+

∫
Vr

ρrgwr dVr︸ ︷︷ ︸
Wr

,

(B 19)

which establishes the equivalence between the work of expansion and the work
against gravity in the reference state, where nr is an outward-pointing unit vector
normal to the boundary ∂Vr enclosing the fluid in the reference state. In (B 19), the
first equality stems from expressing the first integral in the reference state; the second
equality uses (B 18); the third equality results from an integration by parts; and the
final equality stems from that Pr depends on zr and t only, is in hydrostatic balance
and by using the boundary condition vr · nr = wr = ∂ηr/∂t at the surface assumed to
be located at zr = ηr (t).

B.4. Evolution of the background potential energy PE r

We seek an evolution equation for the background PE r by taking the time derivative
of the expression in (B 14), which yields

d PE r

dt
=

∫
V

ρ

[
Tr

DΣ

Dt
− Pr

Dυr

Dt
+ gwr

]
dV + Pa

dVol,r

dt
+

∫
V

[I (Σ, υr ) + gzr ]
D(ρdV )

Dt︸ ︷︷ ︸
=0

=

∫
V

ρTr

Q̇

T
dV =

∫
V

ρQ̇ dV +

∫
V

ρ

(
Tr − T

T

)
Q̇ dV

= Q̇net + (1 − γε)D(KE ) + D(APE ) − G(APE ), (B 20)
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where the final result was arrived at by making use of (B 19), as well as of the
definitions ∫

V

ρQ̇ dV =

∫
V

{
∇ ·

(
κρCp∇T

)
+ ρε

}
dV = Q̇net + D(KE ), (B 21)

Q̇net =

∫
S

κρCp∇T · n dS = Qheating − Qcooling , (B 22)

G(APE ) =

∫
S

(
T − Tr

T

)
κρCp∇T · n dS, (B 23)

D(APE ) =

∫
V

κρCp∇T · ∇
(

T − Tr

T

)
dV, (B 24)

γεD(KE ) =

∫
V

(
T − Tr

T

)
ρε dV, (B 25)

where n is the unit normal vector pointing outward the domain. Equation (B 22)
expresses the net diabatic heating Q̇net due to the surface heat fluxes as the sum of a
purely positive Qheating and negative −Qcooling contributions. Equation (B 23) defines
the rate of available potential energy produced by the surface heat fluxes. The term
D(APE ), as defined by (B 24), is physically expected to represent the rate at which
APE is dissipated by molecular diffusion, so that it is expected to be positive in
general, which has been so far only established empirically using randomly generated
temperature fields, but a rigorous mathematical proof is lacking. Finally, (B 25) states
that a tiny fraction of the diabatic heating due to viscous dissipation might be recycled
to produce work. If γε could be proven to be positive, it could probably be included
as part of the G(APE ). In the following, it will just be neglected for simplicity.

B.5. Evolution of APE

In the previous section, we defined the total potential energy as the sum of GPE , IE
and the quantity PaVol; see (B 14). As a result, using the evolution equations for GPE
and IE previously derived, the evolution equation for PE is given by

d PE

dt
= W − B + Q̇net + Pa

dVol

dt
. (B 26)

Now, combining this equation with the one previously derived for PE r allows us to
derive the following equation for the available potential energy, APE = PE − PE r ,
defined as the difference between the potential energy and its background value:

d APE

dt
≈ W − B + Pa

dVol

dt︸ ︷︷ ︸
C(KE ,APE )

+ Q̇net + D(KE ) − [D(KE ) +D(APE ) + Q̇net − G(APE )]

= C(KE , APE ) + G(APE ) − D(APE ), (B 27)

where the final expression neglects the small term γεD(KE ). The corresponding
energy flowchart for the KE/APE/PE r system is very simple and is illustrated in
figure 10(a). This diagram shows that mechanical energy enters the fluid via the KE
reservoir and thermal energy enters it via the PE r reservoir. There are two dissipation
routes associated with the viscous dissipation of KE and the diffusive dissipation
of APE . Only a certain part G(APE ) of the thermodynamic energy input can be
converted into APE and hence into KE , which is processed via the PE r reservoir.
The two-headed arrow indicates the reversible conversion between KE and APE .
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Figure 10. Successive refinements of the energetics of a forced/dissipated stratified fluid.
(a) The KE/APE/PE r representation. (b) Decomposition of PE r into IE r + GPE r .
(c) Decomposition of IE r into a dead part IE 0 and an exergy part IEexergy = IE r − IE 0.
(d ) Decomposition of APE into AIE and AGPE , revealing the link between C(KE ,APE ) to
the density flux W and the work of expansion/contraction B .

B.6. Splitting of PE r into GPE r and IE r

Although the KE/APE/PE r system offers a simple picture of the energetics of a
(turbulent or not) stratified fluid, it is useful to further decompose the background
PE r reservoir into its GPE and IE components, in order to establish the link with the
existing literature about turbulent mixing, as well as with Munk & Wunsch (1998)’s
theory. The particular question to be addressed is to understand how much of D(KE )
and D(APE ) are actually spread over GPE r and IE r . Likewise, to what extent do Q̇net

and G(APE ) affect GPE r compared with IE r , where we have the following definitions:

IE r =

∫
V

ρ(x, t)I (Σ, υr ) dV =

∫
Vr

ρr (zr, t)I (Σ, υr ) dVr, (B 28)

GPE r =

∫
V

ρ(x, t)gzr (x, t) dV =

∫
Vr

ρr (zr, t)gzr dVr, (B 29)

by expressing the integrals in the coordinate system associated with either the actual
state or the reference state. By definition

d GPE r

dt
=

∫
V

ρg
Dzr

Dt
dV +

∫
V

gzr

D(ρdV )

dt︸ ︷︷ ︸
=0

=

∫
V

ρgwr dV = Wr, (B 30)
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so that the evolution equation for IE r + PaVol,r =PE r − GPE r simply is

d(IEr + PaVol,r )

dt
= Q̇net + D(KE ) + D(APE ) − G(APE ) − Wr. (B 31)

In order to make progress, we need to relate Wr to the different sources and sinks
affecting PE r , as identified in figure (10). To that end, we use the fact that Wr is
related to the work of expansion in the reference state, as shown by (B 19), and regard
υ = υ(Σ, P ) as a function of entropy and pressure, for which the total differential is
given by

dυ = Γ dΣ − 1

ρ2c2
s

dP, (B 32)

where Γ = αT/(ρCp) is the so-called adiabatic lapse rate (e.g. Feistel 2003) and
c2
s = (∂P/∂ρ)Σ is the squared sound of speed. As a result, the expression for Wr

becomes

Wr =

∫
Vr

Pr

Dυr

Dt
ρr dVr − Pa

dVol,r

dt
=

∫
Vr

P ′
rρr

[
αrTr

ρrCpr

Q̇

T
− 1

ρ2
r c

2
sr

DPr

Dt

]
dVr, (B 33)

where P ′
r =Pr − Pa is the pressure corrected by the atmospheric pressure, by noting

that we have

dVol,r

dt
=

∫
V

Dυr

Dt
ρ dV =

∫
Vr

Dυr

Dt
ρr dVr. (B 34)

In order to simplify (B 33), let us recall that mass conservation can be rewritten in
hydrostatic pressure coordinates as follows:

∇r · ur +
∂

∂Pr

DPr

Dt
= 0 (B 35)

(e.g. Haltiner & Williams 1980; de Szoeke & Samelson 2002). As a result, it follows
that integrating (B 35) from the surface where Pa = cst , and hence where DPr/Dt =0,
to an arbitrary level indicates that the surface integral of DPr/Dt must vanish along
any zr = cst surfaces. As a consequence, the term depending on DPr/Dt in (B 33)
must vanish. For an alternative derivation of this result, see Pauluis (2007). The
remaining term can be written as follows:

Wr =

∫
V

P ′
rαrTr

ρrCprT
{∇ · (κρCp∇T ) + ρε} dV

=

∫
V

P ′
rαr

ρrCpr

(
1 +

Tr − T

T

)
∇ · (κρCp∇T ) dV +

∫
V

P ′
rαrTr

ρrCprT
ρε dV

=

∫
V

P ′
rαr

ρrCpr

∇ · (κρCp∇T ) dV︸ ︷︷ ︸
Wr,mixing −Wr, forcing

+

∫
V

P ′
rαr

ρrCpr

(
Tr − T

T

)
∇ · (κρCp∇T ) dV︸ ︷︷ ︸

Υr,apeD(APE )

+

∫
V

P ′
rαrTr

ρrCprT
ρε dV︸ ︷︷ ︸

Υr,keD(KE )

= Wr,mixing − Wr, forcing + Υr,apeD(APE ) + Υr,keD(KE ), (B 36)
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where we defined

Wr,mixing = −
∫

V

κρCp∇T · ∇
(

αrP
′
r

ρrCpr

)
dV, (B 37)

Wr, forcing = −
∫

S

αrP
′
r

ρrCpr

κρCp∇T · n dS, (B 38)

Υr,apeD(APE ) =

∫
V

αrP
′
r

ρrCpr

(
Tr − T

T

)
∇ · (κρCp∇T ) dV, (B 39)

Υr,keD(KE ) =

∫
V

αrPr

ρrCpr

Tr

T
ρε dV. (B 40)

Equation (B 36) shows that the variations of GPE r are affected by the following:
(a) Turbulent mixing associated with Wr,mixing . This expression is similar to the one

previously derived for the L-Boussinesq model. The classical Boussinesq expression
can be recovered from using the approximation T ≈ Tr , taking αr , ρr and Cpr as
constants, and using the approximation Pr ≈ = −ρ0gzr , which yields

Wr,mixing ≈
∫

V

κρ0g‖∇zr‖2α
∂Tr

∂zr

dV.

(b) The surface forcing associated with Wr, forcing . Likewise, the L-Boussinesq
expression can be recovered by making the same approximation, yielding

Wr, forcing ≈
∫

V

αgzr

Cp

Qsurf dS.

Note that in the L-Boussinesq approximation, we have

Wr, forcing ≈ G(APE ),

which is not generally true in the fully compressible Navier–Stokes equation.
(c) The contribution from the viscous and the diffusive dissipation of KE and

APE respectively associated with D(KE ) and D(APE ). Note that the coefficients
Υr,ape and Υr,ke are very small for a nearly incompressible fluid such as seawater.
For instance, typical values are α = 10−4 K−1, P = 4 × 107 Pa, ρ = 103 kg m−3 and
Cp = 4 × 103 J kg−1K−1, which yield

Υr = O

(
10−4 × 4 × 107

103 × 4 × 103

)
= O(10−3).

From this, it follows that at leading order, the direct effects of D(APE ) and D(KE )
on GPE r can be safely neglected compared to the other two effects, so that

d GPE r

dt
= Wr ≈ Wr,mixing − Wr, forcing . (B 41)

The resulting modifications to the energy flowchart are displayed in figure 10(b).
At leading order, the effects of the forcing and the mixing on GPE r appear as
conversion terms with IE r .

B.7. Further partitioning of internal energy into a ‘dead’ and ‘exergy’ component

As seen previously, the L-Boussinesq model is such that

D(APE ) ≈ Wr,mixing , G(APE ) ≈ Wr, forcing , (B 42)
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which may give the impression, based on figure 10(b), that the APE dissipated
by D(APE ) is actually converted into GPE r , while G(APE ) may also appear as
originating from GPE r . The purpose of the following is to show that this is actually
not the case. To that end, we introduce an equivalent isothermal state having exactly
the same energy as that of Lorenz (1955)’s reference state, that is defined by

IE r + GPE r + PaVol,r︸ ︷︷ ︸
PE r

= IE 0 + GPE 0 + PaVol,0︸ ︷︷ ︸
PE 0

. (B 43)

Because both Lorenz’s reference state and the equivalent thermodynamic equilibrium
state are in hydrostatic balance at all times, PE r and PE 0 are just the total
enthalpies of the two states. This makes it possible to define each parcel by
its horizontal coordinates (x, y) and hydrostatic pressure P and assume that
the dead state can be obtained from Lorenz’s reference state by an isobaric
process, so that (x0, y0, P0) = (xr, yr, Pr ), which in turn implies (dx0/dt, dy0/dt,

dP0/dt) = (dxr/dt, dyr/dt, dPr/dt).
Before looking at the evolution of the dead state, let us establish that if the pressure

P is in hydrostatic balance at all times, then we have the following result:∫
V

DP

Dt
dV =

∫
V

u · ∇hP dV, (B 44)

where u is the horizontal part of the three-dimensional velocity field and ∇h is the
horizontal nabla operator. The proof reads∫

V

(
DP

Dt
− u · ∇hP

)
dV =

∫
V

(
∂P

∂t
+ w

∂P

∂z

)
dV

=
d

dt

∫
V

P dV − Pa

dVol

dt
− d

dt

∫
V

ρgz dV

=
d

dt

{
PaVol + MtotgHb +

∫
V

ρgz dV

}
− Pa

dVol

dt
− d

dt

∫
V

ρgz dV = 0,

where Vol and Mtot are the total volume and mass of the fluid, whose expressions are

Vol =

∫
S

(η(x, y, t) + Hb) dx dy, gMtot =

∫
S

(Pb(x, y, t) − Pa) dx dy,

where z = η(x, y, t) is the equation for the free surface, Pb(x, y, t) is the bottom
pressure, Hb is the total depth of the basin and the expression in parentheses was
obtained by using the following result:∫

V

PdV =

∫
S

[Pz]η−Hb
dx dy +

∫
V

ρgz dV =

∫
S

[Paη + PbHb] dx dy +

∫
V

ρgz dV

= Pa

∫
S

(η + Hb) dx dy︸ ︷︷ ︸
PaVol

+ Hb

∫
S

(Pb − Pa) dx dy︸ ︷︷ ︸
Mtot gHb

+

∫
ρgz dV.

The important consequence of (B 44) is that the volume integral of DP/Dt identically
vanishes when P is independent of the horizontal coordinates, as is the case for Pr

and P0. Now, using the expression for the enthalpy I + P/ρ:

d(I + P/ρ) = CpdT +

(
υ − T

∂υ

∂T

)
dP = CpdT + υ (1 − αT ) dP,
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we can derive the following equation for PE 0:

d PE 0

dt
=

∫
V0

ρ0

(
Cp0

DT0

Dt
+ (1 − α0T0)

DP0

Dt

)
dV0 =

dT0

dt

∫
V0

ρ0Cp0 dV0, (B 45)

which naturally provides the following equation for T0:

dT0

dt
=

D(KE ) + D(APE ) + Q̇ − G(APE )∫
V0

ρ0Cp0 dV0

. (B 46)

We can now derive an evolution equation for GPE 0, using the relation

d GPE 0

dt
=

∫
V0

P ′
0

Dυ0

Dt
ρ0 dV0, (B 47)

where P ′
0 = P0 − Pa . Now, expressing dυ = υαdT + υγdP , where γ is the isothermal

expansion coefficient, we arrive at the following expression:

d GPE 0

dt
=

∫
V0

ρ0P
′
0

[
υ0

DT0

α0Dt
− υ0γ0

DP0

Dt

]
dV0 =

dT0

dt

∫
V

α0P
′
0dV0, (B 48)

noting again that the term proportional to DP0/Dt must vanish from the arguments
developed above, so that we simply have

d GPE 0

dt
= Υ0[D(KE ) + D(APE ) + Q̇net − G(APE )], (B 49)

where

Υ0 =

∫
V0

P ′
0α0 dV0∫

V0

ρ0Cp0 dV0

. (B 50)

As a result, it follows that

d(IE 0 + PaVol,0)

dt
=

d(PE 0 − GPE 0)

dt

= (1 − Υ0)[D(KE ) + D(APE ) + Q̇net − G(APE )]. (B 51)

Let us now define the exergy part of the IE r + PaVol,r as

IEexergy = IE r − IE 0 + Pa(Vol,r − Vol,0). (B 52)

The equation is

d IEexergy

dt
= −Wr + Υ0[D(KE ) + D(APE ) + Q̇net − G(APE )]

= (Υ0 − Υr,ke)D(KE ) + (Υ0 − Υr,ape)D(APE ) + Υ0[Q̇net − G(APE )]

− Wr,mixing + Wr, forcing . (B 53)

Again, neglecting the terms proportional to αP/(ρCp) yields the following
simplification:

d(IE 0 + PaVol,0)

dt
≈ D(APE ) + D(KE ) + (1 − Υ0)Q̇net − G(APE ), (B 54)

d(IEexergy )

dt
≈ Wr,mixing − Wr, forcing + Υ0Q̇net . (B 55)
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The corresponding energy flowchart is illustrated in figure 10(d ). This figure shows
that when IE r is decomposed into its dead and exergy parts, a decoupling between
the KE/APE/IE 0 and the IE r − IE 0/GPE r reservoirs appears at leading order.
Note, however, that the rates between the reservoirs remain coupled, owing to the
correlation between D(APE ) and Wr,mixing , as well as between G(APE ) and Wr, forcing

discussed in this paper, and which is the central topic of turbulent mixing theory.

B.8. Separate evolution of APE into GPE and IE components

We conclude the evolution equation of energetics by further splitting the APE
reservoir into its GPE and IE components. Using the previous relations shows that

d AGPE

dt
= W − Wr ≈ W − Wr,mixing + Wr, forcing , (B 56)

d AIE

dt
≈ W − B + G(APE ) − D(APE ) − [W − Wr,mixing + Wr, forcing ]

≈ −B + Wr,mixing − D(APE ) + G(APE ) − Wr, forcing . (B 57)

For seawater, it is generally found that AIE accounts for around 10 % of the
total APE , and hence to a good approximation APE ≈ AGPE , which is implicit in
the Boussinesq approximation. Equating d(AGPE )/dt with d(APE )/dt amounts to
requiring that d(AIE )/dt ≈ 0. By imposing that the forcing and the mixing terms
vanish separately, one obtains

D(APE ) ≈ Wr,mixing − B, (B 58)

G(APE ) ≈ Wr, forcing , (B 59)

which are equivalent to those of the L-Boussinesq and the NL-Boussinesq models.
The corresponding energy flowchart is depicted in figure 10(c). The key feature of
this figure is to reveal that the conversion rates between AGPE and AIE are identical
to those taking place between IE r − IE 0 and GPE r , where the coupling appears to
occur fundamentally between stirring and mixing.
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